

Vehicle Rental System

Assignment 1

CPCS203 Programming-II - Second Semester 2023

Assigned Date: Sunday 25/12/2022

Delivery Date: Saturday 14/01/2023 – 11PM

Instructions

• This program must ONLY be submitted on the Blackboard!

• This project worth 10% of the overall module marks (100%).

• NO assignment will be accepted after 11:59 pm for any reason

• Students can submit their assignment between 11 and 11:59 PM but in this case it will be

consider as late submission.

• Further information is provided in the course syllabus.

 Objectives

• Performing procedure on Objects and classes.

• Learn how to use and implement Class and Object concepts.

• Learn to use File I/O (Reading/Writing from/to files).

• Learn how to use String class

• Implement 1D and 2D arrays and learn how to process the array.

 How to submit your assignment?

• Submit your assignment on the Blackboard ONLY.

• Make sure to add your names / IDs / Section / Your name / Assignment number at the

beginning of your program

 Files provided with assignment

• Input file samples:

o inputCar.txt: which contains all Cars/Services information that needs to be entered

into the system.

o ReservationInput.txt: contains all the commands for reservation requests. These

commands are read from the file and processed by the system.

• Output files:

o CarsInfo.txt: A file that displays all the cars information in the system (The

information in this file is read from inputCar.txt).

o ReservationStatus.txt: which contains a log of all processed reservations

including successful and unsuccessful reservation requests. For successful

reservation requests, a detailed invoice is included.

o AnalysisReport.txt which contains a record of how many each car type had been

requested with each specific service.

Note: Please check the format of each of these files and make
sure you follow this format in your assignment solution.

1.1 The EasyRent Software Description

You have been hired to develop a program software for a local Car Rental Company. Besides car

rental, the company also offers customers additional services such as a navigation system devices,

car seats, and full rental insurance.

The system you are requested to develop is called EasyRent and is expected assist the agent at the

company in processing car reservation and additional services requests. At the beginning, your

system will read the available cars information from inputCar.txt. Information read from

inputCar.txt are written with all the details into the car information file, called CarsInfo.txt.

After that, the system will be ready to process reservation requests! For each reservation request,

the cars’ information including customer information, pick up and drop off location and date, and

any services the customer would like to add are all read from the input file ReservationInput.txt.

After processing each reservation request, the status of this reservation, whether it was successful

or not, is written to the output file ReservationStatus.txt. If a reservation request is successful,

then an invoice will be generated and written to this file. Otherwise, an appropriate message is

displayed to show that the reservation was unsuccessful (Sorry! The requested car is not available).

At last, the system will generate a report file calculating the number of each requested service

according to each car type, which is written to the output file AnalysisReport.txt.

For a more detailed description of the system and commands, please follow the next four steps

which will explain how to develop the EasyRent System.

Step 1: Adding Car Information and Services

All Cars and services, which are available for renting, will be entered to the system before

performing any reservation The first line read from inputCar.txt contains one integer, which

determine the number of car’s types following the type names, and should be saved as 1D array.

This information will be use in section (3.3 Print Analysis Report in the file). The next linecontains

two integers, which determine the number of available cars and services in the system. For

example, the company has (6) cars, and provide (3) services. The following commands are either

for inputting the car information or inputting types of available services. In the following, we

describe the format of each command.

1.1 Command: AddCar

This command is used to add all information of cars available for renting. Car information includes

car brand (such as : Toyota, Mercedes, Nissan), model year, daily rental rate in S.R. transmission

type (either true for Manual or false for Automatic), car type which indicates if it is Economy,

Sport or Luxury. At last, if the car contains a convertible body style, the data field Convertible will

be true, and false means not convertible. Check the following example and table.

Command Example

AddCar Toyota 2015 200 False Economy False

Field name Type Example

Brand String Toyota

year int 2015

rate double 200

Transmission boolean False

Type String Economy

Convertible boolean False

1.2 Command: AddService

This command will input the available additional services with the service’s price into the system.

There are three rental services: Navigation, Full Insurance and Car Seat.

Command Example

AddService Navigation 150

Field name Type Example

Service String Navigation

Rate double 150

1.3 Command: Quit

The command quit will exit the process of entering the system information.

Important Notes

• The transmission data field is Boolean: true means that the car transmission type is Manual

and false means it is Automatic

• The Convertible data field is Boolean: true means that the car transmission type is

Convertible and false means that it is not.

Step 2: Reserve the Car

Car reservation information are found in Reservationinput.txt. The first line of this file is an

integer that determines the number of reservation requests to be processed. For example, in this

attached file Reservationinput.txt, three (3) reservations requests will be processed. In the

following, a more detailed description of processing reservation requests is provided.

2.1 Command: Reserve

This command is used to reserve a car along with the desired additional services. The system

should read all tokens of this command until the word submit is found. For each reservation, the

user should indicate the car type/Transmission/Convertible, pickup/drop off location, pick up and

drop off date. It also takes the customer information which are first name, last name, email, credit

card number, and the customer code. At last, the system will read the requested service (if any).

Command Example

Reserve Sport Automatic Convertible Jeddah Jeddah 2018 11 19 2018 11 22 Saleem Omar
Saleem@gmail.com 112233 786 Navigation submit

Field name Type Example

Car type String Sport

Transmission String Automatic

Convertible String Convertible

Pickup location String Jeddah

Drop off location String Jeddah

Pick up date Date 2018 11 19

Drop off date Date 2018 11 22

First name String Saleem

Last name String Omar

Email String Saleem@gmail.com

Credit Card Long 112233

Customer Code int 786

Service String Navigation

Consider the following notes when processing reservation requests:

Important Notes

• The system will read the Transmission type as a string. It is either “Manual” or “Automatic”.

Then the system should convert the string it into Boolean: True means Manual, False means

Automatic.

• For each confirmed reservation, the system should generate a new reservation reference

code: Rental initial letter + Random value (between 0 and 999) + the year of the car.

Example: SO_998_2017

This code will be printed later in the ReservationStatus.txt (check step 3).

• You must check for an available car based on the requested type, transmission and

convertibility. If the requested car is not available, the reservation cannot be completed, and

an appropriate message is displayed. (see the ReservationStatus.txt) , for example:

SORRY: The reservation is NOT completed

There is no available Car

Step 3: Print all the information

3.1 Print the available car information in the file [CarInfo.txt].

As mentioned earlier, the available cars information is read from inputCar.txt and are written to

the file CarInfo.txt. Please refer to inputCar.txt for the specification of the Add Car command.

Also, refer to CarInfo.txt for the format of printing the car information in that file. Note that the

field’s transmission type and convertible are read as Boolean types from inputCar.txt, but they

are written as strings in CarInfo.txt

3.2 Print the input status in the file [ReservationStatus.txt].

The system should print a log of all processed reservation requests including successful and

unsuccessful reservations. The invoice of successful reservations is printed, and also an

appropriate message is printed for unsuccessful reservations. For example, in step 2, once the

system process the following command from the Reservationinput.txt, the following information

presented in the table below is written to the file ReservationStatus.txt:

Command Example

Reserve Sport Automatic Convertible Jeddah Jeddah 2018 11 19 2018 11 22 Saleem Omar
Saleem@gmail.com 112233 786 Navigation submit

Reservation Confirmation and Invoice

DONE: The reservation is completed

******Reservation Refrence number : SO_998_2017

******Customer information : Customer Name: Saleem Omar, Email: Saleem@gmail.com,

Code: 786

******Pick up location : Jeddah ******Drop of location : Jeddah

******Pick up date : 19-11-2018 ******Drop of date : 22-11-2018

******Car information : The car Type: Mercedes Sport, Year: 2017, Transmission: Automatic

and Convertible

******Additional services : Service Navigation

--------------- Invoice Details ---------------

 Number of reserved days: 3

 Intial Total: 1800.0

--------------- Additional Services Price ---------------

 Total After additional Services : 1950.0

--------------- Final Payment after Discount ---------------

 Final Total : 1560.0

For calculating the rental final cost, shown in the above invoice, you need to consider the

following:

o If the requested car is “Luxury”, the daily rental rate of the car is increased by 10%.

o Calculate the number of rental days and then use it for calculating the initial total price

depending on the daily rental rate of the requested car.

o The requested additional service cost is added to the initial cost.

o The customer code determines the discount rate according to the following criteria:

▪ If the code starts with 9 or 8, then the discount rate will be 20%.

▪ If the code starts with 6, 5, or 4, then the discount rate will be 15%.

▪ If the code starts with 3, 2,1, or 0, then the discount rate will be 10%.

3.3 Print Analysis Report in the file [AnalysisRepor.txt]

The system should print an analysis file as a record of how many each car type had been requested

with each specific service. The car’s types should be read from the 1D array that had been created

based on the first line of file inputCar.txt, and the services should be read from the Service class.

This file information should be saved in 2D array as illustrated in the following table, then these

data should be written in the file AnalysisReport.txt. Also, refer to AnalysisReport.txt for the

format of printing the analysis information in that file.

 car type
Services

Luxury Sport Economy

Navigation # # #

Full Insurance # # #

Car Seat # # #

1.2 UML Class Diagram for EasyRent

In addition to the main class, you should create five classes as shown in the following UML

diagram. Note that you should write appropriate constructor, setter, and getter methods for all

classes. (You don’t need to follow the same given arguments). Be aware of the visibility (public-

private) for each attribute/method.

Reservation

- reservation_code : String
- pick_up_location : String
- drop_of_location : String
- pick_up : Date
- drop_of : Date
- date_of_reservation : Date
- customer : Customer
- car : Car
- additional_services : Service

+ Reservation (pickup : String, dropof : String, dPickup
: Date, dDropof : Date, customer : Customer, car : Car)
+ setReservationCode (code : String) : void
+ getReservationCode () : String
+ setPickUpLocation (pickup : String) : void
+ getPickUpLocation () : String
+ setDropofLocation (dropof : String) : void
+ getDropofLocation () : String
+ addService (currentservice : Service) : void
+ getServices () : Service
+ setPickup (pickup : Date) : void
+ getPickup () : Date
+ setDropOf (dropof : Date) : void
+ getDropOf () : Date
+ getDateOfReservation() : Date
+ getCustomer () : Customer
+ setCar (another : Car) : void
+ getCar () : Car
+ toString() : String

Service

- servicetype : String
- serviceprice : double

+ Service (type : String, price :
double)
+ gettype() : String
+ settype(type : String) : void
+ getPrice() : double
+ setPrice(price : double) : void
+ toString() : String

Customer

- first_name : String
- last_name : String
- email : String
- credit_Card : long
- discount_code : int

+ Customer(firstname : String, lastname :
String, email : String, card : long, code : int)
+ getFirstName() : String
+ setFirstName(firstname : String) : void
+ getLastName() : String
+ setLastName(lastname : String) : void
+ getemail() : String
+ setemail(email : String) : void
+ getCreditCard() : long
+ setCreditCard(card : long) : void
+ getClientCode() : int
+ toString() : String

Car

- brand : String
- carType : String
- year_of_construction : int
- car_rate : double
- transmission_Manual : boolean
- convertible : boolean

+ Car (brand : String, year : int, rate : double, transmission
: boolean, type : String, convertible : boolean)
+ toString() : String
+ setBrand (brand : String) : void
+ getBrand () : String
+ setCarType (type : String) : void
+ setCarType () : String
+ setYearOfConstruction (year : int) : void
+ getYearOfConstruction () : int
+ setCarrate (rate : double) : void
+ getCarrate () : double
+ setTransmission (Transmission : boolean) : void
+ getTransmission() : boolean
+ setConvertible (Convertible : boolean) : void
+ isConvertible () : boolean
+ calculateFinalPrice() : double

Important Notes:

• Use of class & object, arrays of Object, and passing object to method

• Use of Files, Reading/Writing from/on files

• Use 2D array to create the analysis report

• Your program output must be exactly same as given sample output files.

• Your display should be in a readable form.

• Organize your code in separated methods.

• Document your code with comments.

• Use meaningful variables.

• Use dash lines between each method.

• Delayed submission will not be accepted and there will not be any extension of

the project.

Deliverables:

• You should submit one zip file containing all java codes:

BA1587412P1_EasyRent.java where BA is your section, 1587412 your ID and P1 is

program 1.

• NOTE: your name, ID, and section number should be included as comments in

all files!

Input and Output Format
Your program must generate output in a similar format to the sample run provided.

Sample input: See sample input file.

Sample output: See sample output files.

Good Luck!

