
 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 1

CPCS-204

Data

Structures-I

Statement Purpose:

Purpose of this Lab is to familiarize the students with the use and power of recursion

in Java. They will learn what types of problems can be solved using recursion. They
will also be taught what are the merits and demerits of using recursion. The students

will learn how to solve the problems like finding factorial of any number, binary
search, and merge sort using recursion.

Activity Outcomes:

After completing the activities given at the end of this lab material, the students will

learn how to write simple Java programs using recursion. They will understand how to

use recursion for solving various problems like

 Subtraction of all numbers from 1 up to given number

 Getting sum of all elements of an array where each is reformed and summed

 Finding sum of all odd numbers from 1 up to given number

 Displaying a triangle of numbers from 1 to a given number

Theory Review: (5 Minutes)

Recursion:

Recursion is a type of divide-and-conquer technique used to solve difficult programming problems

by reducing a problem to simpler, but identical, "sub-problems." The sub-problems are then reduced

to "sub-sub-problems." This multi-step reduction process continues until a trivial case (called base

case) is reached. The solutions to each sub-problem, starting with the trivial case solution(s) at the

lowest level and working upward to the final solution to the original problem, are then combined to

produce solutions to the next higher level of problems.

When to use recursive algorithms:

Problems that can be solved using a recursive solution must have the following two characteristics:

1. The problem must be able to be stated in terms of simpler yet identical sub-problems.

2. There must be a trivial case (base case) that is easily solved.

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 2

CPCS-204

Data

Structures-I

Example (from theory):

Raising a number to an arbitrary power.

Solution by dividing problem into its sub-problem:

Suppose we want to find some base ‘b’ raised to some power ‘e’ i.e. be.

For example, if b=2 and e=5, then be = 25 = 32. In order to find 25, we can use the following

procedure:

 25 = 2*2*2*2*2 (2 is multiplied with itself 5 times)

It can also be reduced to its sub-problem as

 25 = 2*24

Now 24 can be further reduced to its sub-problem as

 24 = 2*23

Now 23 can be further reduced to its sub-problem as

 23 = 2*22

Now 22 can be further reduced to its sub-problem as

 22 = 2*21

 Now 21 can be further reduced to its sub-problem as

 21 = 2*20

Now the sub-problem 20 cannot be further reduced. So, it becomes our base case i.e. when power

becomes equal to 0, we should get 1.

Recursive Solution:
In order to find the recursive definition of this problem, we will give ‘b’ and ‘e’ as an input to our

recursive method. Then after every step, we shall reduce the power by 1 in order to come closer to

the base case. When we reach base case, we should return 1.

Recursive code for the method “Raising a number to an arbitrary power” is as follows:

public static int power(int b, int e) {

 if (e == 0)

 return 1;

 else

 return b*power(b, e-1);

}

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 3

CPCS-204

Data

Structures-I

Note:

The more you write recursive code, the more you learn about recursion. For this, it is recommended

that the students must visit the site: http://codingbat.com/java/Recursion-1 and try to solve

the problems given as an exercise.

Practice Activity with Lab Instructor: (15 Minutes)

Problem Statement (Triangle)

We have triangle made of blocks. The topmost row has 1 block, the next row down has 2 blocks, the

next row has 3 blocks, and so on. Compute recursively (no loops or multiplication) the total

number of blocks in such a triangle with the given number of rows.

For example:

triangle(0) → 0

triangle(1) → 1

triangle(2) → 3

Defining Recursive Solution:

If we actually draw this triangle for rows = 4,

we see that row 1 has one block, row 2 has

2 blocks, row 3 has 3 blocks and row 4 has 4

blocks and we have to add all these blocks.

So, our recursive method will have the

following formula:

 triangle(rows) = rows + triangle(rows – 1)

Solution:

1. Create a project with the name Recursion2Project.

2. Create a package with the name "Recursion2" within this project.

3. Create a main class in this package with the name "TriangleRecursion".

4. Add the following lines of code within “TriangleRecursion” main class.

Row 1

Row 2

Row 3

Row 4

http://codingbat.com/java/Recursion-1

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 4

CPCS-204

Data

Structures-I

5. When you run this main class, you will get the following output.

Output 1:

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 5

CPCS-204

Data

Structures-I

Output 2:

LAB EXERCISES: (60 Minutes)

1. Add a method named countA() in the program Recursion2.java (provided with

Lab 5 notes) which counts the number of "A" in the given string.

Sample Run 1:

Sample Run 2:

Sample Run 3:

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 6

CPCS-204

Data

Structures-I

2. Add a method named count7() in the program Recursion2.java (provided with

Lab 5 notes) which returns the count of the occurrences of 7 as a digit. For

example 717 yields 2.

Note that mod (%) by 10 yields the rightmost digit (126 % 10 is 6), while

divide (/) by 10 removes the rightmost digit (126 / 10 is 12).

count7(717) → 2

count7(7) → 1

count7(123) → 0

Sample Run 1:

Sample Run 2:

Sample Run 3:

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 7

CPCS-204

Data

Structures-I

3. Add a method named ChangeXY() in the program Recursion2.java (provided

with Lab 5 notes) which computes recursively (no loops) a new string where all

the lowercase 'x' chars have been changed to 'y' chars.

changeXY("codex") → "codey"

changeXY("xxhixx") → "yyhiyy"

changeXY("xhixhix") → "yhiyhiy"

Sample Run 1:

Sample Run 2:

Sample Run 3:

 LAB 6: Recursion 2

CPCS-204 - The Lab Notes Lab. 6 Page 8

CPCS-204

Data

Structures-I

4. Add a method named pairStar() in the program Recursion2.java (provided with
Lab 5 notes) which computes recursively a new string where identical chars that
are adjacent in the original string are separated from each other by a "*".

pairStar("hello")→"hel*lo"

pairStar("xxyy") → "x*xy*y"
pairStar("aaaa") → "a*a*a*a"

Sample Run 1:

Sample Run 2:

Sample Run 3:

