CPCS-204

Data LAB 8: StaCk

Structures-|

/Statement Purpose:)

Purpose of this Lab is to familiarize the students with the use of stack data structure
in writing simple Java programs. Another aim is to teach the students how to
implement stack data structure using arrays and linked list. The students are given
small tasks related to stack which they complete during the lab session under the
supervision of the lab instructor. This helps them understand the concepts well which
they learnt in their lectures.

Activity Outcomes:

The students will learn how to write methods related to some actions performed on
stacks. They will understand how to write simple methods to

e Evaluate postfix expression using stack
e Convert infix expression into its equivalent postfix expression

Theory Review (20 Minutes):
(1) Stack Implementation using array: (10 Minutes)

Review of Stack code using array (all related files are uploaded on Blackboard)
(i) Stack Implementation using linked list: (10 Minutes)

Review of Stack code using linked list (all related files are uploaded on Blackboard)

CPCS-204 - The Lab Notes Lab. 8 Page 1

| wessea

-
LAB EXERCISES: (60 Minutes)

1. Add a method named EvalPostfix() in the above program (implemented with
array) which evaluates any postfix expression using stack.

Sample Run 1:

Output - LabActivities (run) 5 |

. Push an item into the stack

SO0¥F

. Pop land print) an item from the stack
. Peek (lock =2t) the top item in the stack

. Eveluate Postfix expression

|
|
|
. Search for an item in the stack |
|
|
. Conwvert Infix to Postfix |

|

1
2
3
4
5. Print all nodes in the stack
[
7
2. Quit

> Please enter your choice: &
Enter the Postfix expression you wish to evaluate (type on one line and use spaces between all terms):
Example: 7 16 * 5 + 16 * 3 + 18 * 1 +

Please enter the postfix exnpression: 5 4 * 3 + 2 /
k-3 ¥You entered the Postfix expression: S 4 * 3+ 2 7
> This evaluates to 11

4 Sample Run 2: N

Output - LabActivities (run) |

1. Push an item into the stack

2. Pop (and print) an item from the stack

w0 ¥ ¥

3. Peek (look at) the top item in the stack

5. Print all nodes in the stack
©. Evaluate Postfix expression
7. Conwvert Infix to Postfix

| |
| |
| |
| 4. Bezrch for an item in the stack
| |
| |
| |
| 8. Quit

> PBlease enter your choice: &

Enter the Postfix expression you wish to ewvaluate (type on one line and use spaces between all terms) :
Example: 7 1le * 5 + 16 * 3 + 1a * 1 +
Please enter the postfix expression: 7 1le * 5 + 1lé * 3 + 1g * 1 +

> You entered the Postfix expression: 7 1le * 5 + 1lg * 3 + 1g * 1 +

-3 This ewvaluates to 30001

2. Add a method named Infix2Postfix() in the above program (implemented with
array) which converts any infix expression into its equivalent postfix expression.

Sample Run 1:

Output - LabActivities (run) 5 |

|- Stack - Array (Menu) --————-— |

1. Push an item into the stack

&0 ¥ ¥

2. Pop l(and print) an item from the stack
3. Peek (loock at) the top item inm the stack
4. Search for an item in the stack

5. Print all nodes in the stack

&. Ewvaluate Postfix expression

7. Conwvert Infix to Postfix

8. Quit

> Please enter your choice: 7

Enter the Infix expression you wish to conwvert (type on one line and use spaces between all terms) :
Example: 7 * 16 + 5 + 16 * 3 + 16 * Z
Please enter the Infix expression: 7 * & + 3

> You entered the Infix expression: 7 * & + 3

> Which converts to the following Postfix expression: Postfix Expression 76%3+

