
 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 1

CPCS-204

Data

Structures-I

Statement Purpose:

Purpose of this Lab is to familiarize the students with Linked List data structure.

Another aim is to teach the students the disadvantages of using arrays and

advantages of using linked lists as well as the difference between these two data

structures. The students are given small tasks related to linked list which they

complete during the lab session under the supervision of the lab instructor. This helps

them understand the concepts well which they learn in their lectures.

Activity Outcomes:

The students will learn how to write code for various methods which work with linked

lists. They will also understand how to

 return data of second node present in the linked list

 return data of second last node present in the linked list

 delete last node in the existing linked list

 change all odd value nodes into even by subtracting 1 from every odd node and

all even value nodes into odd by adding 1 into every even node.

 Theory Review (10 Minutes):

Linked List:

A linked list is an ordered collection of data, where each element (generally called

nodes) contains the location of the next element in the list. Each node essentially has

two parts:

1. The data part. If this was a list of student records, for example, the data here

may consist of a name, PID, social security number, address, phone, email, etc.

2. The link part. This link is used to chain the nodes together. It simply contains a

reference that points to the next node in the linked list. Variable is often called

“next”

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 2

CPCS-204

Data

Structures-I

Disadvantages of Arrays

 Arrays are fixed size i.e. static

 Arrays can store homogeneous (same) data

 Inserting and deleting elements is expensive because it requires shifting of

 remaining elements

Advantages of Linked List

 Linked list are not fixed size i.e. they are dynamic which means that their size

 can be increased or decreased during the execution of program

 Linked list can store heterogeneous (different) data

 Inserting and deleting elements is very cheap because it does not require

 shifting of remaining elements

Visiting all elements of linked list

 In case of linked list, a reference variable, generally called head points to the first

node of the linked list.

 In order to visit each and every node of linked list, we need to move the reference

variable (may also be called pointer) from first node to the last node.

 We cannot move the head reference variable (unless it is required in order to

delete the first node), otherwise we shall lose some nodes of the linked list.

 For this purpose, we take a copy of the reference variable head and call it as

helpPtr which is moved from first node to the last node using while loop.

 It is depicted in the following method, which displays all nodes of a linked list.

Code for printAllNodes() Method

 //This method is called from main() method

Public static void printAllNodes(){

 printAllNodes(head);

}

//The following method visits each and every node of linked list

and displays the value stored in data field.

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 3

CPCS-204

Data

Structures-I

public static void printAllNodes(LLnode head) {

LLnode helpPtr = head;

 while (helpPtr != null) {

 // Print the data value of the node

 System.out.print(helpPtr.getData() + ", ");

 // Moving to next node

 helpPtr = helpPtr.getNext();

 }

 System.out.println();

}

Practice Activity with Lab Instructor: (10 Minutes)

Make a new project in NetBeans called LinkedListProject1, and then copy the LLnode,

LinkedList, and the main LLdemo class into this project. Your job is to write code in the

method FindLargest() which finds the largest node in the linked list and returns its data to the

calling main() method.

Solution:

1. Create a project with the name LinkListProject1

2. Create a package with the name LinkListUpdated

3. Copy LLnode class in this package.

4. Copy LinkedList class in this package and add the following method in this class.

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 4

CPCS-204

Data

Structures-I

5. Copy LLdemo main class in this package.

6. Add the following lines of code (shown with red arrow) in the showMenu() method of

this class.

7. Add the following lines of code in the main() method of this class

8. When you run this program, it will display the following menu on the screen:

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 5

CPCS-204

Data

Structures-I

9. After inserting some nodes e.g. 12, 17, 10, 50, 20 and 30 in the linked list, when

you select option 4 and then option 7, it will display the following output.

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 6

CPCS-204

Data

Structures-I

LAB EXERCISES: (60 Minutes)

1. Add a method named Data2ndNode() in the above program which returns the

data of second node in the linked list, to the calling main() method.

Note: If list is empty or contains only one node, your code should display error

message accordingly.

Hint: Use following method header:

public int Data2ndNode (){

 return Data2ndNode (head);

}

private int Data2ndNode (LLnode head){

}

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 7

CPCS-204

Data

Structures-I

Sample Run 1:

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 8

CPCS-204

Data

Structures-I

Sample Run 2:

If we insert nodes in the list as 10, 20, 5, 30, 2, and select option 8, it will

display 5 because here the code of insertion inserts elements in ascending

order. So, after arranging the elements of the list, node with data 5 becomes

the second node in the list.

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 9

CPCS-204

Data

Structures-I

2. Add a method named Data2ndLastNode() in the above program which returns

the data of second last node in the linked list, to the calling main() method.

Note: If list is empty or contains only one node, your code should display error

message accordingly.

Hint: Use following method header:

public int Data2ndLastNode (){

 return Data2ndLastNode (head);

}

private int Data2ndLastNode (LLnode head){

}

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 10

CPCS-204

Data

Structures-I

Sample Run 1:

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 11

CPCS-204

Data

Structures-I

Sample Run 2:

If we insert nodes in the list as 10, 20, 5, 30, 2, and select option 9, it will

display 20 because here the code of insertion inserts elements in ascending

order. So, after arranging the elements of the list, node with data 20 becomes

the second last node in the list.

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 12

CPCS-204

Data

Structures-I

3. Add a method named DeleteLast() in the above program which deletes last

node in the existing linked list.

Hint: Use following method header:

public void DeleteLast (){

 head = DeleteLast (head);

}

private LLnode DeleteLast (LLnode head){

}

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 13

CPCS-204

Data

Structures-I

Sample Run 1:

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 14

CPCS-204

Data

Structures-I

Sample Run 2:

If we insert nodes in the list as 10, 20, 5, 30, 2, and select option 10, it will

delete node 30 because here the code of insertion inserts elements in ascending

order. So, after arranging the elements of the list, node with data 30 becomes

the last node in the list.

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 15

CPCS-204

Data

Structures-I

4. Add a method named Odd2Even2Odd() in the above program which changes all

odd value nodes into even by subtracting 1 from every odd node and all even

value nodes into odd by adding 1 into every even node.

Hint: Use following method header:

public void Odd2Even2Odd (){

 Odd2Even2Odd (head);

}

private void Odd2Even2Odd (LLnode head){

}

 LAB 3: Linked List 1

CPCS-204 - The Lab Notes Lab. 3 Page 16

CPCS-204

Data

Structures-I

Sample Run:

If we insert nodes in the list as 15, 20, 5, 30, 25, 10, 3 and select option 11, it

will change all odd value nodes into even nodes and vice versa.

