
CPCS-204
Data

Structures-I

LAB 12: Sorting-1

Statement Purpose:

Purpose of this Lab is to familiarize the students with the use of N-Squared sorting
algorithms namely Selection Sort, Insertion Sort and Bubble Sort. Another aim is to
teach the students how we can improve sorting time using Merge Sort algorithm. The
students are given small tasks related to aforementioned sorting techniques under
the supervision of the lab instructor. This helps them understand the concepts well
which they learn in their lectures.

Activity Outcomes:

The students will learn how various sorting techniques e.g. Selection Sort, Insertion

Sort, Bubble Sort and Merge Sort work on given data set. This will help them

understand the difference among these sorting techniques.

Theory Review (10 Minutes):

Sorting

Sorting is a process to put elements of a list in certain order, to make searching

easier. Various sorting algorithms are used in computer science to arrange the data.

Some of them are efficient in terms of running time e.g. Merge Sort and Quick Sort

whereas some take more running time e.g. Selection Sort, Insertion Sort and Bubble

Sort. But the latter are studied for their simplicity of code. Following is the brief

description of Selection Sort, Insertion Sort and Bubble Sort which take O(n
2
) to run.

1. Selection Sort:

Given an array of „n‟ unsorted elements, Selection sort works in the
following manner:
Step 1:

Find the minimum value in the list of n elements.

Step 2:
Swap this minimum value with the value in the first position i.e. at
index 0. It gives smallest value at the first position.

Step 3:
Repeat steps 1 and 2, for all the remaining elements, till we get
sorted array.

CPCS-204 - The Lab Notes Lab. 12 Page 1

CPCS-204
Data

Structures-I

LAB 12: Sorting

Example:

2. Insertion Sort:

Given an array of „n‟ unsorted elements, Insertion sort works in the
following manner:

Step 1:
Pick the element at index 1, i.e. skip element at index 0, and insert it into
its correct position. This is done by comparing this element with the
previous element. As long as the current element is smaller than the
previous element, it is swapped with it, until it gets its correct position.

Step 2:
Step 1 is repeated for all the remaining elements, till the given array
is sorted.

CPCS-204 - The Lab Notes Lab. 12 Page 2

CPCS-204
Data

Structures-I

LAB 12: Sorting

Example:

3. Bubble Sort:

Given an array of „n‟ unsorted elements, Bubble sort works in the
following manner:

Step 1:

Compare two consecutive elements. If they are out of place, swap them.

Step 2:
Repeat step 1 for all the elements till you compare last two elements.
At the end of first iteration, largest element will be at the last position.

Step 3:
Repeat steps 1 and 2 for all the remaining elements till you get the

sorted array.

CPCS-204 - The Lab Notes Lab. 12 Page 3

CPCS-204
Data

Structures-I

LAB 12: Sorting

Example:

CPCS-204 - The Lab Notes Lab. 12 Page 4

CPCS-204
Data

Structures-I

LAB 12: Sorting

Practice Activity with Lab Instructor: (10 Minutes)

1. Create a project with the name “Lab12”.
2. Create a main class with the name “InsertionSort” within this project.
3. Type the following code in this main class.

CPCS-204 - The Lab Notes Lab. 12 Page 5

CPCS-204
Data

Structures-I

LAB 12: Sorting

4. When you run this program, it displays the following output.

Practice Activity:

Your job is to make changes in the above code so that we get the elements
in descending order.

CPCS-204 - The Lab Notes Lab. 12 Page 6

CPCS-204
Data

Structures-I

LAB 12: Sorting

LAB EXERCISES: (60 Minutes)

1) Show the contents of the array below being sorted using Insertion Sort at the
end of each loop iteration.

Initial 2 8 3 6 5 1 4 7

Sorted 1 2 3 4 5 6 7 8

2) Show the contents of the array below being sorted using Selection Sort at the

end of each loop iteration. As shown in the class, please run the algorithm by

placing the smallest item in first place.

Initial 6 2 8 1 3 7 5 4

Sorted 1 2 3 4 5 6 7 8

3) Show the contents of the array below being sorted using Bubble Sort at the

end of each loop iteration.As shown in the class, please run the algorithm

by placing the largest item in first place.

Initial 4 2 6 5 7 1 8 3

Sorted 1 2 3 4 5 6 7 8

CPCS-204 - The Lab Notes Lab. 12 Page 7

CPCS-204
Data

Structures-I

LAB 12: Sorting

4) When Merge Sort is run on an array of size 8, the merge function gets called

7 times. Consider running Merge Sort on the array below. What would the

contents of the array be right before the 7
th

 call to the Merge function?

Initial 7 2 1 5 8 3 4 6

Before 7
th

Merge

5) Show the result of running Partition on the array below using the

leftmost element as the pivot element. Show what the array looks like

after each swap.

Initial 5 2 1 7 8 3 4 6

After

Partition

6) Show the contents of the array below after each merge occurs in the process
of Merge-Sorting the array below.

Initial 3 6 8 1 7 4 5 2

Last 1 2 3 4 5 6 7 8

7) The following MergeSort() java code and Merge() algorithm are used to sort
elements in the array in ascending order. Your job is to write java code for

Merge() method and make changes in it so that it arranges the elements of

the array in descending order.

CPCS-204 - The Lab NotesLab. 12 Page 8

CPCS-204
Data

Structures-I

LAB 12: Sorting

Code for MergeSort() Method:

public static void MergeSort(int[] values, int start, int end) {

int mid;

// Check if our sorting range is more than one element.

if (start < end) {
mid = (start+end)/2;

// Sort the first half of the values.

MergeSort(values, start, mid);

// Sort the last half of the values.

MergeSort(values, mid+1, end);

// Put it all together.

Merge(values, start,mid+1, end);
}

}

Code for Merge() Method:

public static void Merge(int[] values, int p, int q, int r) {

int[] B = new int[values.length];

inti, j, k;

i = k = p;

j = q + 1;
while ((i<= q) && (j <= r)) {

if (values[i] <= values[j]) {

B[k++] = values[i++];
}
else {

B[k++] = values[j++];
}

} //End of while

while (i<= q){ //If left subarray has more elements than right

//subarray
B[k++] = values[i++];

}

CPCS-204 - The Lab Notes Lab. 12 Page 9

CPCS-204
Data

Structures-I

LAB 12: Sorting

while (j <= r){ //If right subarray has more elements than

left // subarray
B[k++] = values[j++];

}
for (int n = p ; n < r ; n++) {

values[n] = B[n]; //Storing all elements of temporary array B

//in original array A
}

}

CPCS-204 - The Lab NotesLab. 12 Page 10

	page1
	page3
	page5
	page7
	page9
	page11
	page13
	page15
	page17
	page19

