CPCS-204

Data LAB 6: Recursion 2

Structures-|

4 N

Statement Purpose:

Purpose of this Lab is to familiarize the students with the use and power of recursion
in Java. They will learn what types of problems can be solved using recursion. They
will also be taught what are the merits and demerits of using recursion. The students
will learn how to solve the problems like finding factorial of any number, binary
search, and merge sort using recursion.

Activity Outcomes:

After completing the activities given at the end of this lab material, the students will
learn how to write simple Java programs using recursion. They will understand how to
use recursion for solving various problems like

e Subtraction of all numbers from 1 up to given number

e Getting sum of all elements of an array where each is reformed and summed
e Finding sum of all odd numbers from 1 up to given number

e Displaying a triangle of numbers from 1 to a given number

Theory Review: (5 Minutes)

Recursion:

Recursion is a type of divide-and-conquer technique used to solve difficult programming problems
by reducing a problem to simpler, but identical, "sub-problems." The sub-problems are then reduced
to "sub-sub-problems."” This multi-step reduction process continues until a trivial case (called base
case) is reached. The solutions to each sub-problem, starting with the trivial case solution(s) at the
lowest level and working upward to the final solution to the original problem, are then combined to
produce solutions to the next higher level of problems.

When to use recursive algorithms:
Problems that can be solved using a recursive solution must have the following two characteristics:

1. The problem must be able to be stated in terms of simpler yet identical sub-problems.
\2. There must be a trivial case (base case) that is easily solved.

CPCS-204 - The Lab Notes Lab. 6 Page 1

CPCS-204

Data ’ LAB 6: Recursion 2

Structures-|

4 N
Example (from theory):

Raising a number to an arbitrary power.

Solution by dividing problem into its sub-problem:

Suppose we want to find some base ‘b’ raised to some power ‘e’ i.e. b®.
For example, if b=2 and e=5, then b® = 2° = 32. In order to find 2°, we can use the following
procedure:
25 = 2%2%2*2*2 (2 is multiplied with itself 5 times)
It can also be reduced to its sub-problem as
25 — 2*24
Now 24 can be further reduced to its sub-problem as
24 - 2*23
Now 23 can be further reduced to its sub-problem as
23 = 2%92
Now 22 can be further reduced to its sub-problem as
22 — 2*21
Now 2! can be further reduced to its sub-problem as
21 — 2*20
Now the sub-problem 2° cannot be further reduced. So, it becomes our base case i.e. when power
becomes equal to 0, we should get 1.

Recursive Solution:

In order to find the recursive definition of this problem, we will give ‘b’ and ‘e’ as an input to our
recursive method. Then after every step, we shall reduce the power by 1 in order to come closer to
the base case. When we reach base case, we should return 1.

Recursive code for the method “Raising a number to an arbitrary power” is as follows:

public static int power(int b, inte) {

if (e==0)
return 1;
else
return b*power(b, e-1);
}
_ J

CPCS-204 - The Lab Notes Lab. 6 Page 2

CPCS-204

Data LAB 6: Recursion 2

Structures-|

4 N\
Note:

The more you write recursive code, the more you learn about recursion. For this, it is recommended
that the students must visit the site: http://codingbat.com/java/Recursion-1 and try to solve
the problems given as an exercise.

Practice Activity with Lab Instructor: (15 Minutes)

Problem Statement (Triangle)

We have triangle made of blocks. The topmost row has 1 block, the next row down has 2 blocks, the
next row has 3 blocks, and so on. Compute recursively (no loops or multiplication) the total
number of blocks in such a triangle with the given number of rows.

For example:

triangle(0) — 0
triangle(1) — 1
triangle(2) — 3

Defining Recursive Solution:

Row 1

If we actually draw this triangle for rows = 4, -
we see that row 1 has one block, row 2 has

2 blocks, row 3 has 3 blocks and row 4 has 4 -- Row 2
blocks and we have to add all these blocks.

EElm (-
So, our recursive method will have the
following formula: ---- Row 4

triangle(rows) = rows + triangle(rows — 1)

Solution:

1. Create a project with the name Recursion2Project.

2. Create a package with the name "Recursion2" within this project.

3. Create a main class in this package with the name "TriangleRecursion™.
4. Add the following lines of code within “TriangleRecursion” main class.

CPCS-204 - The Lab Notes Lab. 6 Page 3

http://codingbat.com/java/Recursion-1

L wesmewsen2

-

5. When you run this main class, you will get the following output.

Output 1:

Qutput - Recursion2Project (run)

rumn:
Enter the number of rows: 4

Total blocks in triangle of rows 4 are 10
BUILD SUCCESSFUL (total time: & seconds)

wl T

StartPage 2 @Tﬁangleﬁ.emrsion.jaua ss|
=)oy @ B-8-QATFEE(PE |20 5|t
1
2 package RecursionZ;
3
4| [F] import jawva.util.Scanner;
5 public class TriangleRecursion {
6 [public static void main(String[] args) {
7 Scanner =c = new Scanner (System. 1n);
g System.ocut.print ("Enter the number of rows: ")
9 int r = =sc.nextInt ()
10 System.ocut.println();
11 int SumBlocks = triangle(r):
12 System.ocut.println("Total bklocks in triangle of rows "4r+4" are "+S5umBlocks) :
13| - }
14
15 public static int triangle(int rows) {
16 if (rows == 0)
17 return 0;
18 glse
19 return rows + triangle(rows-1):
20 }
21 H

L wesmewsen2

4 N
Output 2:

Qutput - Recursion2Project (run) 2

» rumn:

Enter the number of rows: 7

-

ﬁ Total blocks in triangle of rows 7 are Z8
% BUILD SUCCESSFUL (total time: Z seconds)

LAB EXERCISES: (60 Minutes)

1. Add a method named countA() in the program Recursion2.java (provided with
Lab 5 notes) which counts the number of "A" in the given string.

Sample Run 1:

Output - CountAproject (run) |

w rumnz

u> Elezse enter any sString: BANANLZS

E HNumber of &4's in the string BANAMNAS is 3
% BUILD SUCCESSFUL (total time: 1 minute 58 seconds)

Sample Run 2:

Output - CountAproject (run) =2

w rumn:

u> Plezse enter any string: MANED

E Number of A's in the string MANED is 1
@Q BUILD SUCCESSFUL (total time: 320 seconds)

Sample Run 3:

Qutput - CountAproject (run) 2

rumn:
Elezse enter any string: CURRY

Number of A's in the string CURRY is 0
BUILD SUCCESSFUL (total time: 34 seconds) /

SETT

| wesRewsonz

4 N

2. Add a method named count7() in the program Recursion2.java (provided with
Lab 5 notes) which returns the count of the occurrences of 7 as a digit. For
example 717 yields 2.

Note that mod (%) by 10 yields the rightmost digit (126 % 10 is 6), while
divide (/) by 10 removes the rightmost digit (126 / 10 is 12).

count7(717) — 2
count7(7) - 1
count7(123) - 0

Sample Run 1:

Output - Count?Project (run) =2

w run:

u> Please enter any number: 717

E Humber of 7's in the number 717 is 2
Eﬁ BUILD SUCCESSFUL (total time: 4 geconds)

Sample Run 2:

Qutput - Count?Project (run) =2

w rum:

I;|> Please enter any number: 1374572387

ﬁ Humber of 7's in the number 1374372387 is 3
% BUILD SUCCESSFUL (total time: 13 seconds)

Sample Run 3:

Qutput - CountfProject (run) =

ruamn:

PFlease enter any number: 1Z345&

Numbker of 7's in the number 12345& is 0O
BUOILD SUCCESSFUL (total time: 3 seconds)

gl T

| wesRewsonz

4)

3. Add a method named ChangeXY() in the program Recursion2.java (provided
with Lab 5 notes) which computes recursively (no loops) a new string where all
the lowercase 'x' chars have been changed to 'y' chars.

changeXY("codex") — "codey"
changeXY("xxhixx") — "yyhiyy"
changeXY("xhixhix") — "yhiyhiy'

Sample Run 1:

Qutput - ChangeCharacters (run) 2 |

rumn:
Plezse enter any string in lower case: codex

01d string was codex
Hew string after changing x's into y¥'3s is codey
BUILD SUCCESSFUL (total time: 10 seconds)

g 0T

Sample Run 2:

Qutput - ChangeCharacters (run) =

rum:
Plezse enter any sString in lower case: xxhixx

01d string was xxhixx
HNew string after changing x's into v¥'3 is yyhiyy

BUILD SUCCESSFUL (total time: 2 seconds)

ETT

Sample Run 3:

Qutput - ChangeCharacters (run) 2

rumn:
Please enter any string in lower case: yhivhiy

01d string was yhivhiy
New string after changing x's into ¥'3 is vhivhiy

BUILD SUCCESSFUL (total time: 2 seconds)

g BT

| wesRewsonz

-

~

4. Add a method named pairStar() in the program Recursion2.java (provided with
Lab 5 notes) which computes recursively a new string where identical chars that
are adjacent in the original string are separated from each other by a "*".

pairStar("hello")—"hel*lo"
pairStar("xxyy") — "x*xy*y"
pairStar("aaaa") — "a*a*a*a"

Sample Run 1:

Output - PairStars (run) |

rumn-z

Please enter any 3string: hello

0l1d string was hello

g 0T

New string after inserting *3 in adjacent identical characters is hel*lo
BUILD SUCCESSFUL (total time: 13 seconds)

Sample Run 2:

Output - PairStars {run) |

rum:

Plezse enter any string: xxyy

01d string was XYy

0T

New string after inserting *s in adjacent identical characters is x*xy*y
BUILD SUCCESSFUL (total time: 57 seconds)

Sample Run 3:

Output - PairStars (run) % |

rumncz

Plezse enter any string: =ass

01d string was aaaa

0T

New string after inserting *3 in adjacent identical characters is a*a*a*a
BUILD SUCCESSFUL (total time: 1Z seconds)

