CPCS-204

Data LAB 10: Binary Search Trees

Structures-I

/Statement Purpose:)

Purpose of this Lab is to familiarize the students with the use of Binary Search Trees
data structure in writing simple Java programs. Another aim is to teach the students
how to implement Binary Search Tree data structure using linked list. The students
are given small tasks related to BST which they complete during the lab session
under the supervision of the lab instructor. This helps them understand the concepts
well which they learn in their lectures.

Activity Outcomes:

The students will learn how to write methods related to some actions performed on
Binary Search Trees. They will understand how to write simple methods to

e print the nodes of BST in postorder form

e print the nodes of BST in descending order i.e. largest to smallest form
e count number of nodes which are divisible by 7

e modify all nodes by adding some specific value

Theory Review (10 Minutes):

Binary Search Tree

In computer science, Binary Search Trees (BST), sometimes called ordered or sorted
binary trees, are a particular type of data structures that store "items" (such as numbers,
names etc.) in memory. They allow fast searching, addition and removal of items.

Binary search trees keep their keys in sorted order, so that lookup and other operations can
use the principle of binary search. When looking for a key in a tree (or a place to insert a new
key), they traverse the tree from root to leaf, making comparisons to keys stored in the
nodes of the tree and deciding, based on the comparison, to continue searching in the left or
right subtrees.

Applications of Binary Search Tree

In computer science, BST are most commonly used for
e Creating dictionary
e Making decision trees e.g. for sorting some numbers
e Creating Min-Heap or Max-Heap to be used in many algorithms

CPCS-204 - The Lab Notes Lab. 10 Page 1

L |vewEmysamnme

Commonly used operations onBinary Search Trees

Commonly used operations on BST are as follows:
1. insert

Thisprocess inserts the node in the BST in its proper location i.e. if it is less than its
parent, it will be inserted on the left of its parent, otherwise it is inserted on the
right of its parent.

2. remove

This process deletes any node from the BST.

3. search

This process returns true if any value is present in the tree otherwise it returns
false. During this process, it compares the value to be searched with the parent. If
it is found here, it returns true. If not found, it checks whether the value to be
searched is less than or greater than the parent. If it is less than the parent, it
recursively searches the left subtree otherwise it recursively searches the right
subtree.

4. traverse

This process visits each and every node of the tree. It can traverse in pre-order,
post-order or in-order.

L |vewEmysamnme

e I
Practice Activity with Lab Instructor: (10 Minutes)

BST Implementation using linked list:

1. Create a project with the name BSTProject

2. Create a package with the name TreesPackage within this project

3. Copy BSTnode class in this package

4. Copy intBST class in this package and add the following method in this class

StartPage s |4 BSTdemojava 5| [<] intBST.java |
Souree | Hstory | [(- B - |0 b FE) P L R o]0 0| &
360 o
38l public int heightBST() {
362 T return heightBST (rooct) ;
363 H
364
365 -] private int helightBST (ESTnode p) {
3ge int leftHeight, rightHeight;
367 if (p = null)
& return 0;
369 leftHeight = heightB5T (p.getlLeft ()):
370 rightHeight= heightBS5T (p.getRight())
37 if [(leftHeight> rightHeight)
& return leftHeight+ 1;
373 return rightHeight+ 1:;
374 - H
375

5. Copy BSTdemo class in this package and add the following lines of code in
showMenu() method of this main class.

-J

[
StartPage % |4\ BSTdemojava || intBSTjava |

[(Soue Jrisory | @ E-F-|QBFENRIFPER (0 B|& =
138
133 [pukbklic static wvoid showMenu () {
140 System.cvt.println{"|-------------- - - - - - - """\ " "\ ——«"- - ——_ . ——— [
141 System. cut.println("|———— Binary Search Tree Memu @ ~ —f— [y
142 System.ovnt.println{"|----——-————————— [y
143 System.out.println (™| 1. Insert an item into the tree ["y:
144 System.ocut.println (™| 2. Delete an item from the tree [y
145 System.cut.println (™| 3. Search for an item in the tree ["y:
148 System. cut.println("| 4. Find the parent of zome node [y
147 System.ocut.println (" | 5. Print the sum of all data wvalues [y
148 System.out.println (™| 6. Print an inorder traversal of the trep [y
149 System.ocut.println (™| 7. Print height of the tree [y
150 System.cut.println (™| 8. Quit ["y:
151 sysctem. ovt.prinelnf{"|-------------—-------------- - - - - - - - - - - - -~ ——-| ——— [y
152 System.cut.println():
153 System.out.print ("> Please enter your choice: ");
154 - }

6. Add the following lines of code in the main() method of this main class

StartPage 52| [4L BSTdemo.java amaimmﬂjwa =
[Source] Histoy |[9 @& -81-| A FENG P &% @0 0L
114 else if (choice == T) {
115 if (myTree.isEmpty()) {
1186 System. cout.println ("> Error: cannot print height (the tree is empty) ™).
117 System.cut.println();
118 }
119 else {
120 System.cut.println (">Height of tree is: ["+myTree.heightBST()):
121 System.cut.print ("> ")
122 System.cut.println();
123 System.cut.println();
124 }
125 }
126 else if (choice == &) {
127 System.ocut.println ("> Goodbye!")
128 System.cut.println();
129 }
130 else {
131 System.cut.println ("> Wrong selection. Try aggin.™):
132 System.cut.println():
133 }
134
135 } while (choice != 8); «
138

7. When you run this program, it will display the following menu on the screen:

8. After insertingsome elements e.g. 50, 30, 60, 25, 40, 55, 58, 35, 45, 44 and 43 in

9.

Qutput - BSTProject (run) 2

1. Insert an item into the tree

g O ¥ &

Z. Delete an item from the tree

3. SBearch for an item in the tree

5. Print the sum of all data walues
&. Print an inorder traversal of the tree
7. Print height of the tree

|
|
|
Find the parent of some node
|
|
|
2. fmit |

> Please enter your choice:

the BST, if you select option 6, it will display the following output:

Output - BSTProject (run) % |

1. Imsert an item into the tree

Z. Delete an item from the tree

2l T

3. Bearch for an item in the tree

4. Find the parent of some node

&. Print an inorder traversal of the tree
7. Print height of the tree

| |
| |
| |
| |
| 5. Print the sum of all data wvalues
| |
| |
| 2. Quit |

> Please enter your choice: &
¥»Inorder Traversal of nodes:
> 25, 30, 35, 40, 43, 44, 45, 50, 55, BB, €0,

Now if you select option 7, it will display the following output:

Qutput - BSTProject (run) 22

- Insert an item intoc the tree

g B ¥ &
1
1
1
|
[uil
H-
fu
1]
H
bt
5]
o
1]
H
&
H
n
1]
=
5
[
|
1
1
1
L

- Delete an item from the tree
- Search for an item in the tree

- Find the parent of somse node

. Print an inorder trawversal of the tree
- Print height of the tree

1
2
3
4
5. Print the sum of all data walues
g
7
8. Quit

> Please enter your choice: 7

*Height of tree is: ©
>

LAB EXERCISES: (60 Minutes)

1. Write a method postorder() in intBST class which prints all nodes of the BST in
postorder. Call this method from main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose
the option 8, it will display the following output:

Qutput - BSTProject (run) 2

1. Imsert an item into the tree
2. Delete an item from the tree

g 0 ¥ ¥

3. Bearch for an item in the tree
4_ Find the parent of some node
5. Print the sum of all data wvalues

7. Print height of the tree

8. Print postorder trawversal of the tree
9. Print nodes in descending order

10. Count nodes which are diwisibkle by 7
11. Modify 211 nodes by adding some wvalue

| |
| |
| |
| |
| |
| &. Print an inorder trawversal of the tree |
| |
| |
| |
| |
| |
| 12, Cuit |

> Please enter your choice: 8
»Postorder trawversal of nodes is:
> 25, 35, 43, 44, 45, 4Z, 30, 58, 55, &3, 50,

2. Write a method descendingorder() in intBST class which prints all nodes of the
BST in descending order i.e. largest to smallest form. Call this method from
main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose
the option 9, it will display the following output:

Qutput - BSTProject (run) &

1. Insert am item into the tree

g B ¥ ¥
n
I
I
|
|
|
o
H
d
]
H
bt
5]
1]
]
]
&
H
n
m
=
g
[+
|
]
I
I
|
|

2. Delete an item from the tree

3. Bearch for an item in the tree

4_ Find the parent of some node

5. Print the sum of all data walues

&. Print an inorder trawversal of the tree
7. Print height of the tree

8. Print postorder trawversal of the tree

9. Print nodes in descending order

10. Count nodes which are diwvisibkle by 7

11. Modify all nodes by adding some walue
12, Cuit

> Please enter your choice: 3
*Nodes of tree in descending order :

> €3, 58, 55, 50, 45, 44, 43, 4%, 35, 30, 25,

3. Write a method count7() in intBST class which counts and returns the number
of nodes which are divisible by 7. Call this method from main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose
the option 10, it will display the following output:

Qutput - BSTProject (run) 2

1. Imsert an item into the tree

g 0 ¥ ¥
1
1
1
i
o
B
o
1]
G
b
5]
o
i
H
b
|_I
m
m
=
m
E
i
1
1
1
L

| |
| 2. Delete an item from the tree

| 3. Search for an item in the tree

| 4_ Find the parent of soms node

| 5. Print the sum of all data walues |
| &. Print an inorder trawversal of the tree |
| 7. Print height of the tree

| 8. Print postorder traversal of the tree |
| 5. Print nodes in descending order

| 10. Count nodes which are diwisikle by 7 |
| 11. Modify 211 nodes by adding some wvalue |
| 12. Quit |

> Please enter your choice: 10
Number of nodes divisikle by 7 is: 3
>

4. Write a method modifyAllINodes() in intBST class which modifies all nodes of
BST by adding some specific value in them. Call this method from main class.
Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose
the option 11, it will display the following output:

Qutput - BSTProject (run) 2

g 0 ¥ ¥

10. Count nodes which are divisikle by 7
11. Modify 211 nodes by adding some wvalue
1z.

| 1. Insert an item into the tree

| 2. Delete an item from the tree

| 3. Search for am item in the tree

| 4. Find the parent of somse node

| 5. Print the sum of all data wvalues |
| &. Print an incrder trawversal of the tree |
| 7. Print height of the tree

| 8. Print postorder trawversal of the tree |
| S9. Print nodes in descending order

| |
| |
| |

Cuit

> Please enter your choice: 11

What walue you want to add in all nodes?

100

*211 nodes of the tree hawve been successfully modified
>

Now if you choose option 8, it will display modified nodes in postorder as:

Output - BSTProject (run) |

Insert an item into the tree
Delete an item from the tree

g B ¥ ¥

Search for am item in the tree
Find the parent of soms node

Erint
Erint
Erint
Erint
3. Print

10.

the sum of all data walues

an inorder traversal of the tree

height of the tree
postorder trawversal of the

nodes in descending order

Count nodes which are divisibkle

11. Modify all nodes by adding some

tree

by 7

walue

=1
'

1z2.

Quit

¥» Please enter your choice: B8
*Postorder traversal of nodes is:

> 125, 133, 143, 144, 145, 142, 130, 158, 155, 1l&3, 150

