
LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 1

CPCS-204

Data

Structures-I

Statement Purpose:

Purpose of this Lab is to familiarize the students with the use of queue data structure
in writing simple Java programs. Another aim is to teach the students how to

implement queue data structure using linked list. The students are given small tasks
related to queue which they complete during the lab session under the supervision of

the lab instructor. This helps them understand the concepts well which they learn in
their lectures.

Activity Outcomes:

The students will learn how to write methods related to some actions performed on

queues. They will understand how to write simple methods to

 delete a specific node from a queue using only enqueue() and dequeue()

methods

 copy even nodes of a queue in a second queue and odd nodes in a third queue.

 reverse the elements of a queue by using a stack for this process

Theory Review (10 Minutes):

Queue

In computer science, a queue or FIFO (first in, first out) is an abstract data type that

serves as a collection of elements, with two principal operations: enqueue, which adds an

element to the end of collection, and dequeue, which removes the first element that was

added.

In most high level languages, a queue can be easily implemented either through an array or

a linked list.

Applications of queue

In computer science, queues are most commonly used for

 Accessing shared resources (e.g. printer)

 Heaps (min-priority queue or max-priority queue)

 Storing packets on network routers

 Breadth-first search in graphs

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 2

CPCS-204

Data

Structures-I

Commonly used operations onqueues

Commonly used operations on queues are as follows:

1. isEmpty()

This methodreturns true if queue is empty and false otherwise.

2. isFull()

This method returns true if queue is full and false otherwise. If queue is

implemented using linked list, this method is not used.

3. enqueue()

This method is used to insert any element at the end of the queue. It takes value to

be inserted as a parameter.

4. dequeue()

This method removes one element from the front of the queue and returns it to the

calling method.

5. front() or peek()

This method returns the element at the front of the queue without removing it from

the queue.

6. Size()

This method returns the number of elements present in the queue.

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 3

CPCS-204

Data

Structures-I

Practice Activity with Lab Instructor: (10 Minutes)

Queue Implementation using linked list:

1. Create a project with the name QueueLinkedListProject

2. Create a package with the name queuelldemo within this project

3. Copy QueueNode class in this package

4. Copy QueueLL class in this package and add the following method in this class

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 4

CPCS-204

Data

Structures-I

5. Copy QueueLLDemo class in this package and add the following lines of code in

showMenu() method of this main class.

6. Add the following lines of code in the main() method of this main class

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 5

CPCS-204

Data

Structures-I

7. When you run this program, it will display the following menu on the screen:

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 6

CPCS-204

Data

Structures-I

8. After enqueuingsome elements e.g. 10, 20,35, 26, 53, 90 in the queue, if you

select option 5, it will display the following output:

9. Now if you select option 6, it will display the following output:

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 7

CPCS-204

Data

Structures-I

LAB EXERCISES: (60 Minutes)

1. Delete a node from a queue using only enqueue() and dequeue() methods. You

can use another queue for this purpose.

Hint:

 You have a queue which contains 100 random numbers between 1 and 1000.

Your task is to write a code in main class which deletes a particular node from

the queue. However, in this process, you can use only enqueue() and

dequeue() methods. In this process, you will dequeue() all elements from first

queue, except the one which you want to delete, and enqueue() these

elements in the second queue. Now all elements of first queue, except the one

which you have deleted, are in the second queue. Finally, dequeue all elements

of the second queue and enqueue them in the original queue.

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 8

CPCS-204

Data

Structures-I

Sample Run (for 10 elements):

2. Copy even nodes of a queue in a second queue and odd nodes in a third queue.

After the process is over, the first queue should be empty.

Hint:

 You have a queue which contains 100 random numbers between 1 and 1000.

Your task is to write a code in main class which enqueues all even elements of

the first queue in the second queue and all odd elements in the third queue.

During this process, you should use only enqueue() and dequeue() methods. At

the end of the process, the first queue should be empty.

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page 9

CPCS-204

Data

Structures-I

Sample Run (for 10 elements):

3. Reverse the elements of a queue. You can use stack for this purpose.

Hint:

 You have a queue which contains 100 random numbers between 1 and 1000.

Your task is to write a code in main class which reverses all elements of the

queue. In this process, you will first dequeue all elements of the queue and

push them onto the stack. Then you will pop all elements of the stack and

enqueue them into the queue.

LAB 9: Queue

CPCS-204 - The Lab Notes Lab. 9 Page

10

CPCS-204

Data

Structures-I

Sample Run (for 10 elements):

