
King Abdulaziz University Faculty of Computing and Information
Technology Computer Science Department

CPCS204, Spring 2023 Program 3
Assignment 3: stack

Assigned: Thursday 4th May 2023 Due: Thursday, 18th May 2023

Purpose

1. Learn to implement a stack for a real-world problem.
2. Review file I/O (input/output).

Read Carefully:

This program is worth 5% of your final grade.

WARNING: This is an individual project; you must solve it by yourself. Any form
of cheating will result in receiving a zero in the assignment.

The deadline for this project is Thursday, 18th May 2023 by 11:59 PM.

LATE SUBMISSION: No assignment will be accepted after the deadline.

Blackboard Submission:

This project must be submitted online via Blackboard.

The source file(s) of your program should be zipped up. You must name the zip file
using the following naming convention:
SectionNumber_StudentID_ProgramNumber.zip

Question: 1 2 3 Total

Points: 20 20 60 100

Question 1: (20 points)

1. Suppose the following operations are performed on the given stack S containing integers.
What is the output of the following code segment? Also show the content of Stack S.

Note: Use the stack operations push(), pop(), and top() methods, and the top is a
reference to element 11 in the stack.

Question 2:(20 points)

1. Convert the following infix expression to postfix a+b*c+d*e#.

2. Evaluate the following postfix notion of expression. What is the top of the stack after
third * operations?

6 2 3 * / 3 4 * + 3 6 * −

3. Show the step-by-step process of evaluation of the postfix expression 2 4 6 +* and show
the status of the stack after every operation.

11
30
25
17
1
4

20

S

S.pop();

S.push(11);

S.pop();
S.pop();
S.pop();

S.push(2);
S.push(3);
S.push(4);
S.push(5);

 for(int i = 0; i < 7; i++)
 {

 if (S.top() % 2 == 0)

 System.out.print(S.top() + " ");

 S.pop();
 }

Question 3: (60 points)

Program 1: URL Stack System

Objective:
The goal of this program is to develop a browser software that stores recently visited web pages.
The primary objective of this program is to implement a stack using an array. The secondary
objective is to practice with File I/O.

Program Description:

Write a program that uses stack to push the URL links for the recently visited web pages. If the
user clicks on go back or visits a new page, the operation pop and push will be used
respectively. Also, the user can use only 3 browser tabs to create a stack for each tab.
There is a main history stack for all the visited web pages for all the tabs. You are required to
write the following methods:

1. Write a function to push the URL link for the recently visited web page to a specific tab
stack.
2. Write a function to pop the tab stack element to get the URL link for the previously visited
page.
3. Write a function to push any visited web pages in any tabs using its URL link to the
history stack.

The program deals with three files. Two input files and one output file. Information on the same
line is separated by spaces. The description of these files is as follow:

- The first input file (intialInformationStack.txt) contains important information for the
system, including information about the recently visited web pages, and the favorite bookmark.
The information in this file is arranged as follow:

● The first line contains the number of recently visited web pages. (Note: The size of
each tab stack is 10 while the size of the history stack stacks is 50)

● The following lines contain the URL link for recently visited web pages for all tabs.

- The commands for the system are found in the second file called commandsStack.txt.
The commands in this file are as follow:

● STARTUP: This command will use the first input file (intialInformation.txt) to
initialize the system by creating the tab stacks arrays (equal to the number of the
specified number in the file) and the history stack array. All the URL links for
recently visited web pages should be pushed to its tab stack (see
intialInformation.txt)

● GO_ FORWARD: This command requires two values that determine the tab
name and the URL link for the recently visited web page. It will push the URL

link into the tab stack. If no available space in the tab stack exists, the system
shows “The (tab..) stack is full, the following URL (…..) cannot be stored!!”. If
no tab stack is found, the system shows “This tab is not found”.

● GO_ BACK: This command requires two values that determine the tab name and
the URL link for the recently visited web page. It will pop the URL link from the
specified tab stack and push it to the history stack. If no available space in the
history stack exists, the system shows “The history stack is full, the following URL
(…..) cannot be stored!!”.

● DISPLAY_ALL_VISITED: This command will display all the URL links for
the recently visited web page for all tabs. It will pop all the URL links from the
all tab stack as it is shown in the ouput.txt file.

● QUIT: This command will stop the program.

- The output of the program should be written to the file name output.txt, which content
should be similar to the contents of the file provided to you.

Implementation
For this program, you will create the following classes:

• webPageStackArray.java: This class will be used to create objects of type webpage stack array.
The stack object will store the URL for the web pages as a string. All the stack methods will be
implemented in this class.

• MainProgram.java: This is the class that will contain the main.

Sample Input & Output File
We have provided you with a sample for two input files and one output file.

Grading Details

Your program will be graded upon the following criteria:

1) Adhering to the implementation specifications listed on this write-up.
2) Your algorithmic design.
3) Correctness.
4) Use of the three classes, as specified. If your program is missing these elements, you will

lose marks.
5) The frequency and utility of the comments in the code, as well as the use of white space for

easy readability. (If your code is poorly commented and spaced and works perfectly, you
could earn as low as 80-85% on it.)

6) Compatibility to the newest version of NetBeans. (If your program does not compile in
NetBeans, you will get a large deduction from your grade.)

7) Your program should include a header comment with the following information: your
name, email, account number, section number, assignment title, and date.

8) Your output MUST adhere to the EXACT output format shown in the sample output file.

Deliverables
You should submit a zip file with four files inside:

1. ConceptPart.doc (Algorithm and Method Write up)
2. webPageStackArray.java
3. MainProgram.java

***These three files should all be INSIDE the same package called URLStackSystem. If they
are not in this specific package, you will lose points.

NOTE: your name, ID, section number AND EMAIL should be included as comments in
all files!

UML Diagrams:

For this program, you will create two Classes (UML diagram shown below):

webPageStackArray

Data Members
private String URL;

Operations/Methods
Instructor () // one or more Constructors
Push()
Pop()
Top()
isFull()
isEmpty()

And any other methods you need.

Data Members
As needed

Operations/Methods

public static void main()

ALL necessary methods for all operations

