
LAB 13: Sorting-2

CPCS-204 - The Lab Notes Lab. 13 Page 1

CPCS-204

Data

Structures-I

Statement Purpose:

Purpose of this Lab is to familiarize the students with the use of N-Squared sorting

algorithms namely Selection Sort and Bubble Sort. Another aim is to teach the

students how we can improve sorting time using Merge Sort algorithm. The students

are given small tasks related to aforementioned sorting techniques under the

supervision of the lab instructor. This helps them understand the concepts well which

they learn in their lectures.

Activity Outcomes:

The students will learn how various sorting techniques e.g. Selection Sort, Bubble

Sort, Merge Sort and Quick Sort work on given data set. This will help them

understand the difference among these sorting techniques.

Lab Activities: (40 Minutes)

1. Following is an algorithm of Selection Sort. Your task is to write a complete java

program which takes ‘n’ elements from user at run time and stores in an array of

length ‘n’. Your program should use the following Selection Sort algorithm and

then display the elements of array in ascending order.

Selection Sort Algorithm:

 Let the elements be stored in an array "a"

 Let n = a.length

 for (i = 0 ; i< n ; i ++)

 {

 Find the array element with the min. value among a[i], ...,

a[n-1];

 Swap this element with a[i];

 }

LAB 13: Sorting-2

CPCS-204 - The Lab Notes Lab. 13 Page 2

CPCS-204

Data

Structures-I

Sample Run:

LAB 13: Sorting-2

CPCS-204 - The Lab Notes Lab. 13 Page 3

CPCS-204

Data

Structures-I

2. Following is an algorithm of Bubble Sort. Your task is to write a complete java

program which takes ‘n’ elements from user at run time and stores in an array of

length ‘n’. Your program should use the following Bubble Sort algorithm and then

display the elements of array in ascending order.

Bubble Sort Algorithm:

 procedurebubbleSort(A : list of sortable items)

 n = length(A)

 boolean swapped = true;

 while (swapped == true) do

 swapped = false

 fori = 1 to n-1 inclusive do

 /* if this pair is out of order */

 if A[i-1] > A[i] then

 /* swap them and remember something changed */

 swap(A[i-1], A[i])

 swapped = true

 end if

 end for

 end while

 end procedure

LAB 13: Sorting-2

CPCS-204 - The Lab Notes Lab. 13 Page 4

CPCS-204

Data

Structures-I

Sample Run:

LAB 13: Sorting-2

CPCS-204 - The Lab Notes Lab. 13 Page 5

CPCS-204

Data

Structures-I

Lab Exercises: (40 Minutes):

1) Show the contents of the array below being sorted using selection Sort at the
end of each loop iteration. The array should be sorted in descending order.

Initial 7 5 1 4 2 6 8 3
1st Iteration
2ndIteration
3rdIteration
4thIteration
5thIteration
6thIteration
7thIteration

Sorted 8 7 6 5 4 3 2 1

2) Show the contents of the array below being sorted using Bubble Sort at the
end of each loop iteration. The array should be sorted in descending order.

Initial 7 5 1 4 2 6 8 3
1st Iteration
2ndIteration
3rdIteration
4thIteration
5thIteration
6thIteration
7thIteration

Sorted 8 7 6 5 4 3 2 1

LAB 13: Sorting-2

CPCS-204 - The Lab Notes Lab. 13 Page 6

CPCS-204

Data

Structures-I

3) Show the contents of the array below after each merge occurs in the process of
Merge-Sorting the array below. The array should be sorted in descending
order.

Initial 10 5 25 50 20 35 40 45
1st Iteration
2ndIteration
3rdIteration
4thIteration
5thIteration
6thIteration
7thIteration

Sorted 50 45 40 35 25 20 10 5

4) Show the result of running Partition on the array below using the leftmost

element as the pivot element. Show what the array looks like after each

swap. The array should be sorted in descending order.

Initial 5 2 1 4 7 8 3 6

After

partition

