
LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 1

CPCS-204

Data

Structures-I

Statement Purpose:

Purpose of this Lab is to familiarize the students with the use of Binary Search Trees
data structure in writing simple Java programs. Another aim is to teach the students

how to implement Binary Search Tree data structure using linked list. The students
are given small tasks related to BST which they complete during the lab session

under the supervision of the lab instructor. This helps them understand the concepts
well which they learn in their lectures.

Activity Outcomes:

The students will learn how to write methods related to some actions performed on

Binary Search Trees. They will understand how to write simple methods to

 print the nodes of BST in postorder form

 print the nodes of BST in descending order i.e. largest to smallest form

 count number of nodes which are divisible by 7

 modify all nodes by adding some specific value

Theory Review (10 Minutes):

Binary Search Tree

In computer science, Binary Search Trees (BST), sometimes called ordered or sorted

binary trees, are a particular type of data structures that store "items" (such as numbers,

names etc.) in memory. They allow fast searching, addition and removal of items.

Binary search trees keep their keys in sorted order, so that lookup and other operations can

use the principle of binary search. When looking for a key in a tree (or a place to insert a new

key), they traverse the tree from root to leaf, making comparisons to keys stored in the

nodes of the tree and deciding, based on the comparison, to continue searching in the left or

right subtrees.

Applications of Binary Search Tree

In computer science, BST are most commonly used for

 Creating dictionary

 Making decision trees e.g. for sorting some numbers

 Creating Min-Heap or Max-Heap to be used in many algorithms

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 2

CPCS-204

Data

Structures-I

Commonly used operations onBinary Search Trees

Commonly used operations on BST are as follows:

1. insert

Thisprocess inserts the node in the BST in its proper location i.e. if it is less than its

parent, it will be inserted on the left of its parent, otherwise it is inserted on the

right of its parent.

2. remove

This process deletes any node from the BST.

3. search

This process returns true if any value is present in the tree otherwise it returns

false. During this process, it compares the value to be searched with the parent. If

it is found here, it returns true. If not found, it checks whether the value to be

searched is less than or greater than the parent. If it is less than the parent, it

recursively searches the left subtree otherwise it recursively searches the right

subtree.

4. traverse

This process visits each and every node of the tree. It can traverse in pre-order,
post-order or in-order.

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 3

CPCS-204

Data

Structures-I

Practice Activity with Lab Instructor: (10 Minutes)

BST Implementation using linked list:

1. Create a project with the name BSTProject

2. Create a package with the name TreesPackage within this project

3. Copy BSTnode class in this package

4. Copy intBST class in this package and add the following method in this class

5. Copy BSTdemo class in this package and add the following lines of code in

showMenu() method of this main class.

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 4

CPCS-204

Data

Structures-I

6. Add the following lines of code in the main() method of this main class

7. When you run this program, it will display the following menu on the screen:

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 5

CPCS-204

Data

Structures-I

8. After insertingsome elements e.g. 50, 30, 60, 25, 40, 55, 58, 35, 45, 44 and 43 in

the BST, if you select option 6, it will display the following output:

9. Now if you select option 7, it will display the following output:

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 6

CPCS-204

Data

Structures-I

LAB EXERCISES: (60 Minutes)

1. Write a method postorder() in intBST class which prints all nodes of the BST in

postorder. Call this method from main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose

the option 8, it will display the following output:

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 7

CPCS-204

Data

Structures-I

2. Write a method descendingorder() in intBST class which prints all nodes of the

BST in descending order i.e. largest to smallest form. Call this method from

main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose

the option 9, it will display the following output:

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 8

CPCS-204

Data

Structures-I

3. Write a method count7() in intBST class which counts and returns the number

of nodes which are divisible by 7. Call this method from main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose

the option 10, it will display the following output:

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 9

CPCS-204

Data

Structures-I

4. Write a method modifyAllNodes() in intBST class which modifies all nodes of

BST by adding some specific value in them. Call this method from main class.

Sample Run:

If we insert the nodes 50, 30, 63, 25, 42, 55, 58, 35, 45, 44 and 43 and choose

the option 11, it will display the following output:

LAB 10: Binary Search Trees

CPCS-204 - The Lab Notes Lab. 10 Page 10

CPCS-204

Data

Structures-I

Now if you choose option 8, it will display modified nodes in postorder as:

