
Chapter 4: Combinational
Logic Circuits

CPIT 210

Agenda
1. Introduction
2. Analysis Procedure
3. Design Procedure
4. Binary Adder-Subtractor
5. Decimal Adder
6. Magnitude Comparator
7. Decoders
8. Encoders
9. Multiplexers

3

Introduction
n Logic circuits for digital systems may be

combinational or sequential.
n A combinational circuit consists of input variables,

logic gates, and output variables.

4

Analysis procedure
n To obtain the output Boolean functions

from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables
with arbitrary symbols. Determine the Boolean functions
for each gate output.

2. Label the gates that are a function of input variables and
previously labeled gates with other arbitrary symbols. Find
the Boolean functions for these gates.

5

Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

4. By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input
variables.

6

Example- Obtain the Boolean Functions
F2 = AB + AC + BC; T1 = A + B + C; T2 = ABC; T3 = F2’T1;
F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC

7

Example: Derive truth table from logic
diagram

n We can derive the truth table in Table 4-1 by using
the circuit of Fig.4-2.

8

Design Procedure-Truth table
1. Table4-2 is a Code-Conversion example, first, we

can list the relation of the BCD and Excess-3
codes in the truth table.

9

Design Procedure-Karnaugh map
2. For each symbol of the Excess-3 code, we use 1’s

to draw the map for simplifying Boolean function.

10

Design Procedure-Circuit implementation
z = D’; y = CD + C’D’ = CD + (C + D)’
x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’
w = A + BC + BD = A + B(C + D)

11

Binary Adder-Subtractor
n A combinational circuit that performs the addition of two

bits is called a half adder.
n The truth table for the half adder is listed below:

S = x’y + xy’
C = xy

S: Sum
C: Carry

12

Implementation of Half-Adder

13

Full-Adder
n One that performs the addition of three bits(two

significant bits and a previous carry) is a full adder.

14

Simplified Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz
C = xy + xz + yz

C

15

Full adder implemented in SOP

16

Another implementation
n Full-adder can also implemented with two half

adders and one OR gate (Carry Look-Ahead adder).
S = z ⊕ (x ⊕ y)

= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

17

Binary adder
n This is also called

Ripple Carry
Adder ,because of
the construction
with full adders are
connected in
cascade.

18

Carry Propagation
n Fig.4-9 causes a unstable factor on carry bit, and produces a

longest propagation delay.

n The signal from Ci to the output carry Ci+1, propagates
through an AND and OR gates, so, for an n-bit RCA, there
are 2n gate levels for the carry to propagate from input to
output.

19

Carry Propagation
n Because the propagation delay will affect the output signals

on different time, so the signals are given enough time to
get the precise and stable outputs.

n The most widely used technique employs the principle of
carry look-ahead to improve the speed of the algorithm.

20

Boolean functions
Pi = Ai ⊕ Bi steady state value
Gi = AiBi steady state value

Output sum and carry
Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate
C0 = input carry
C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

n C3 does not have to wait for C2 and C1 to propagate.

21

Logic diagram of
carry look-ahead generator

n C3 is propagated at the same time as C2 and C1.

22

4-bit adder with carry lookahead
n Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

23

Binary subtractor
M = 1àsubtractor ; M = 0àadder

24

Overflow
n It is worth noting Fig.4-13 that binary numbers in the

signed-complement system are added and subtracted by the
same basic addition and subtraction rules as unsigned
numbers.

n Overflow is a problem in digital computers because the
number of bits that hold the number is finite and a result
that contains n+1 bits cannot be accommodated.

25

Overflow on signed and unsigned
n When two unsigned numbers are added, an overflow is

detected from the end carry out of the MSB position.

n When two signed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate
an overflow.

n An overflow cann’t occur after an addition if one number is
positive and the other is negative.

n An overflow may occur if the two numbers added are both
positive or both negative.

26

Decimal adder
BCD adder can’t exceed 9 on each input digit. K is the carry.

27

Rules of BCD adder
n When the binary sum is greater than 1001, we obtain a

non-valid BCD representation.

n The addition of binary 6(0110) to the binary sum converts it
to the correct BCD representation and also produces an
output carry as required.

n To distinguish them from binary 1000 and 1001, which also
have a 1 in position Z8, we specify further that either Z4 or
Z2 must have a 1.

C = K + Z8Z4 + Z8Z2

28

Implementation of BCD adder
n A decimal parallel

adder that adds n
decimal digits needs
n BCD adder stages.

n The output carry
from one stage
must be connected
to the input carry of
the next higher-
order stage.

If =1

0110

29

Magnitude comparator
n The equality relation of each

pair of bits can be expressed
logically with an exclusive-NOR
function as:

A = A3A2A1A0 ; B = B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 0, 1, 2, 3

(A = B) = x3x2x1x0

30

Magnitude comparator
n We inspect the relative

magnitudes of pairs of MSB. If
equal, we compare the next
lower significant pair of digits
until a pair of unequal digits is
reached.

n If the corresponding digit of A is
1 and that of B is 0, we conclude
that A>B.

(A>B)=
A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1A0B’0
(A<B)=
A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1A’0B0

31

Decoders
n The decoder is called n-to-m-line decoder, where

m≤2n .

n the decoder is also used in conjunction with other
code converters such as a BCD-to-seven_segment
decoder.

n 3-to-8 line decoder: For each possible input
combination, there are seven outputs that are
equal to 0 and only one that is equal to 1.

32

Implementation and truth table

33

Decoder with enable input
n Some decoders are constructed with NAND gates, it

becomes more economical to generate the decoder
minterms in their complemented form.

n As indicated by the truth table , only one output can be
equal to 0 at any given time, all other outputs are equal to 1.

34

3-to-8 decoder with enable
implement the 4-to-16 decoder

35

Implementation of a Full Adder with
a Decoder

n From table 4-4, we obtain the functions for the combinational circuit in
sum of minterms:

S(x, y, z) = ∑(1, 2, 4, 7)
C(x, y, z) = ∑(3, 5, 6, 7)

36

4-9. Encoders
n An encoder is the inverse operation of a decoder.
n We can derive the Boolean functions by table 4-7

z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

37

Priority encoder
n If two inputs are active simultaneously, the output produces

an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

n Another ambiguity in the octal-to-binary encoder is that an
output with all 0’s is generated when all the inputs are 0;
the output is the same as when D0 is equal to 1.

n The discrepancy tables on Table 4-7 and Table 4-8 can
resolve aforesaid condition by providing one more output to
indicate that at least one input is equal to 1.

38

Priority encoder
V=0àno valid inputs
V=1àvalid inputs

X’s in output columns represent
don’t-care conditions
X’s in the input columns are
useful for representing a truth
table in condensed form.
Instead of listing all 16
minterms of four variables.

39

4-input priority encoder

n Implementation of
table 4-8

x = D2 + D3

y = D3 + D1D’2
V = D0 + D1 + D2 + D3

0

0
0

0

40

Multiplexers
S = 0, Y = I0 Truth Tableà S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1

41

4-to-1 Line Multiplexer

42

Quadruple 2-to-1 Line Multiplexer
n Multiplexer circuits can be combined with common selection inputs to

provide multiple-bit selection logic. Compare with Fig4-24.

I0

I1

Y

43

Boolean function implementation
n A more efficient method for implementing a Boolean

function of n variables with a multiplexer that has n-1
selection inputs.

F(x, y, z) = S(1,2,6,7)

44

4-input function with a
multiplexer
F(A, B, C, D) = S(1, 3, 4, 11, 12, 13, 14, 15)

