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Introduction
n Logic circuits for digital systems may be 

combinational or sequential.
n A combinational circuit consists of input variables, 

logic gates, and output variables.
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Analysis procedure
n To obtain the output Boolean functions 

from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables 
with arbitrary symbols. Determine the Boolean functions 
for each gate output.

2. Label the gates that are a function of input variables and 
previously labeled gates with other arbitrary symbols. Find 
the Boolean functions for these gates.



5

Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of 
the circuit are obtained.

4. By repeated substitution of previously defined functions, 
obtain the output Boolean functions in terms of input 
variables.
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Example- Obtain the Boolean Functions
F2 = AB + AC + BC;  T1 = A + B + C; T2 = ABC;   T3 = F2’T1;  
F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC
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Example: Derive truth table from logic 
diagram

n We can derive the truth table in Table 4-1 by using 
the circuit of Fig.4-2.
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Design Procedure-Truth table
1. Table4-2 is a Code-Conversion example, first, we 

can list the relation of the BCD and Excess-3 
codes in the truth table.
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Design Procedure-Karnaugh map
2. For each symbol of the Excess-3 code, we use 1’s 

to draw the map for simplifying Boolean function.
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Design Procedure-Circuit implementation
z = D’; y = CD + C’D’ = CD + (C + D)’
x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’
w = A + BC + BD = A + B(C + D)
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Binary Adder-Subtractor
n A combinational circuit that performs the addition of two 

bits is called a half adder.
n The truth table for the half adder is listed below:

S = x’y + xy’
C = xy

S: Sum
C: Carry
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Implementation of Half-Adder
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Full-Adder
n One that performs the addition of three bits(two 

significant bits and a previous carry) is a full adder.
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Simplified  Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz
C = xy + xz + yz

C
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Full adder implemented in SOP
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Another implementation
n Full-adder can also implemented with two half 

adders and one OR gate (Carry Look-Ahead adder).
S = z ⊕ (x ⊕ y)

= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy
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Binary adder
n This is also called 

Ripple Carry 
Adder ,because of 
the construction 
with full adders are 
connected in 
cascade.
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Carry Propagation
n Fig.4-9 causes a unstable factor on carry bit, and produces a 

longest propagation delay.

n The signal from Ci to the output carry Ci+1, propagates 
through an AND and OR gates, so, for an n-bit RCA, there 
are 2n gate levels for the carry to propagate from input to 
output.
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Carry Propagation
n Because the propagation delay will affect the output signals 

on different time, so the signals are given enough time to 
get the precise and stable outputs.

n The most widely used technique employs the principle of 
carry look-ahead to improve the speed of the algorithm.
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Boolean functions
Pi = Ai ⊕ Bi steady state value
Gi = AiBi steady state value

Output sum and carry
Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate
C0 = input  carry
C1 = G0 + P0C0

C2 = G1 + P1C1  = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

n C3 does not have to wait for C2 and C1 to propagate.
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Logic diagram of 
carry look-ahead generator

n C3 is propagated at the same time as C2 and C1.
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4-bit adder with carry lookahead
n Delay time of n-bit CLAA = XOR + (AND + OR) + XOR
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Binary subtractor
M = 1àsubtractor ; M = 0àadder
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Overflow
n It is worth noting Fig.4-13 that binary numbers in the 

signed-complement system are added and subtracted by the 
same basic addition and subtraction rules as unsigned 
numbers.

n Overflow is a problem in digital computers because the 
number of bits that hold the number is finite and a result 
that contains n+1 bits cannot be accommodated.
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Overflow on signed and unsigned
n When two unsigned numbers are added, an overflow is 

detected from the end carry out of the MSB position.

n When two signed numbers are added, the sign bit is treated 
as part of the number and the end carry does not indicate 
an overflow.

n An overflow cann’t occur after an addition if one number is 
positive and the other is negative.

n An overflow may occur if the two numbers added are both 
positive or both negative.
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Decimal adder
BCD adder can’t exceed 9 on each input digit. K is the carry.
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Rules of BCD adder
n When the binary sum is greater than 1001, we obtain a 

non-valid BCD representation.

n The addition of binary 6(0110) to the binary sum converts it 
to the correct BCD representation and also produces an 
output carry as required.

n To distinguish them from binary 1000 and 1001, which also 
have a 1 in position Z8, we specify further that either Z4 or 
Z2 must have a 1.

C = K + Z8Z4 + Z8Z2
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Implementation of BCD adder
n A decimal parallel 

adder that adds n 
decimal digits needs 
n BCD adder stages.

n The output carry 
from one stage
must be connected
to the input carry of 
the next higher-
order stage.

If =1

0110
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Magnitude comparator
n The equality relation of each 

pair of bits can be expressed 
logically with an exclusive-NOR
function as:

A = A3A2A1A0 ; B = B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 0, 1, 2, 3

(A = B) = x3x2x1x0
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Magnitude comparator
n We inspect the relative 

magnitudes of pairs of MSB. If 
equal, we compare the next 
lower significant pair of digits 
until a pair of unequal digits is 
reached.

n If the corresponding digit of A is 
1 and that of B is 0, we conclude 
that A>B.

(A>B)=
A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1A0B’0
(A<B)=
A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1A’0B0
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Decoders
n The decoder is called n-to-m-line decoder, where 

m≤2n .

n the decoder is also used in conjunction with other 
code converters such as a BCD-to-seven_segment 
decoder.

n 3-to-8 line decoder: For each possible input 
combination, there are seven outputs that are 
equal to 0 and only one that is equal to 1.
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Implementation and truth table
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Decoder with enable input
n Some decoders are constructed with NAND gates, it 

becomes more economical to generate the decoder 
minterms in their complemented form.

n As indicated by the truth table , only one output can be 
equal to 0 at any given time, all other outputs are equal to 1.
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3-to-8 decoder with enable 
implement the 4-to-16 decoder
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Implementation of a Full Adder with 
a Decoder

n From table 4-4, we obtain the functions for the combinational circuit in 
sum of minterms:

S(x, y, z) = ∑(1, 2, 4, 7)
C(x, y, z) = ∑(3, 5, 6, 7)
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4-9. Encoders
n An encoder is the inverse operation of a decoder.
n We can derive the Boolean functions by table 4-7

z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7
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Priority encoder
n If two inputs are active simultaneously, the output produces 

an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

n Another ambiguity in the octal-to-binary encoder is that an 
output with all 0’s is generated when all the inputs are 0; 
the output is the same as when D0 is equal to 1.

n The discrepancy tables on Table 4-7 and Table 4-8 can 
resolve aforesaid condition by providing one more output to 
indicate that at least one input is equal to 1. 
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Priority encoder
V=0àno valid inputs
V=1àvalid inputs

X’s in output columns represent 
don’t-care conditions
X’s in the input columns are 
useful for representing a truth 
table in condensed form. 
Instead of listing all 16 
minterms of four variables.
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4-input priority encoder

n Implementation of 
table 4-8

x = D2 + D3

y = D3 + D1D’2
V = D0 + D1 + D2 + D3

0

0
0

0
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Multiplexers
S = 0, Y = I0 Truth Tableà S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1
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4-to-1 Line Multiplexer
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Quadruple 2-to-1 Line Multiplexer
n Multiplexer circuits can be combined with common selection inputs to 

provide multiple-bit selection logic. Compare with Fig4-24.

I0

I1

Y
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Boolean function implementation
n A more efficient method for implementing a Boolean 

function of n variables with a multiplexer that has n-1 
selection inputs.

F(x, y, z) = S(1,2,6,7)
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4-input function with a 
multiplexer
F(A, B, C, D) = S(1, 3, 4, 11, 12, 13, 14, 15)


