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i Introduction

= Logic circuits for digital systems may be
combinational or sequential.

= A combinational circuit consists of input variables,
logic gates, and output variables.
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Fig. 4-1 Block Diagram of Combinational Circuit



i Analysis procedure

To obtain the output Boolean functions
from a logic diagram, proceed as follows:

Label all gate outputs that are a function of input variables
with arbitrary symbols. Determine the Boolean functions
for each gate output.

Label the gates that are a function of input variables and

previously labeled gates with other arbitrary symbols. Find
the Boolean functions for these gates.



i Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

2. By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input

variables.



Example- Obtain the Boolean Functions

F2—AB+AC+BC T1 A+B+C T2=ABC, T3=F2’T1;
Fi=T:+T,
Fi=T3+T,=F,/T;+ ABC = ABC + A'BC + AB'C’ + ABC
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Fig. 4-2 Logic Diagram for Analysis Example



Example: Derive truth table from logic
diagram

= We can derive the truth table in Table 4-1 by using
the circuit of Fig.4-2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C F, F, T, T, Ts [
0 0O 0 0 | 0 0 0 0
0 0 | 0 1 | 0 | |
0 | 0 0 | | 0 | |
0 | | | 0 | 0 0 0
1 0 0 0 | | 0 | |
| ) ] | 0 | 0 0 0
| | 0 | 0 | 0 0 0
| | | | 0 | | 0 |




i Design Procedure-Truth table

1. Table4-2 is a Code-Conversion example, first, we
can list the relation of the BCD and Excess-3
codes in the truth table.

Table 4-2
Truth Tabile for Code-Conversion Exampie
input BCD Output Excess- 3 Code
K B C D By x y z

0 0 ) 0 ) ] ]
O O 0 ] 0 ] 0 0

O | O O ) 0 )
U ! ! O ! !




Design Procedure-Karnaugh map

For each symbol of the Excess-3 code, we use 1’s
to draw the map for simplifying Boolean function.
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cD < cD <
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D D
z =D vy = CD + C'D’
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D D
X =B'C + B'D + BC' D’ w = A + BC + BD

Fig. 4-3 Maps for BCD to Excess- 3 Code Converter



i Design Procedure-Circuit implementation
z=D; y=CD+ CD =CD + (C + D)

x = B'C + B'D + BCD’' = B(C + D) + B(C + DY)’
w=A+BC+BD=A+B(C+ D)

cD Y N y

A

v %Uv
Y

C +D

10

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter



i Binary Adder-Subtractor

= A combinational circuit that performs the addition of two
bits is called a half adder.

= The truth table for the half adder is listed below:

Table 4-3

Half Adder
X y C S S: Sum
0 0 0 0 C: Carry
0 | 0 |
| 0 0 |
| 1 | 0
S =Xy + Xy
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i Implementation of Half-Adder

— -

Ba

S

(a)
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S=xy +x'y (b)S=xDy
C=xy C=xy

Fig. 4-5 Implementation of Half-Adder
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i Full-Adder

= One that performs the addition of three bits(two
significant bits and a previous carry) is a full adder.

Table 4-4
Full Adder

x y z C S

0 0 0 | 0 0
0 0 1 0 1
0 l 0 0 1
0 1 1 1 0
1 0 0 0 1
1 O 1 i O
1 1 0 1 0
1 1 1 | 1 1




i Simplified Expressions

vz vz Y
00 01 11 10 00 01 11 10
X X
/\
0 1 1 0 | >
N
PN
1] 1 | ¥ |1 @ ]
Z Z
S=x"yz+x'yz'+xy'z" +xyz C=xy+xz+yz
= xy tlxy'z +x'yz

Fig. 4-6 Maps for Full Adder

S=XYzZ+ XYyzZ + XyzZ + Xyz

C=Xxy+ Xz +yz
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i Full adder implemented in SOP

M =
| ||

O

M =
| |

-
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j

Fig.4-7 Implementation of Full Adder in Sum of Products
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i Another implementation

= Full-adder can also implemented with two half
adders and one OR gate (Carry Look-Ahead adder).
S=zo(xoy)
= 7Z(xy’ + Xy) + z(xy’ + Xy)
=XyzZ + XYyzZ + Xyz + Xy'z
C=1z(xy’ + Xy) + Xy = Xy'z + Xyz + Xy

yL} 'j S

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate 16




i Binary adder

= This is also called
Ripple Carry
Adder ,because of
the construction
with full adders are
connected in
cascade.

Subscript i 3 2 1 0
[nput carry | I SN SRS | C
Augend Lirsihic ays o] A,
Addend S | S R B,
Sum ST o | S,
Output carry | A | B Maiety Ci+
By Aj B A B A By Ay
C; G G
I— FA < FA < FA < FA  fe——,
C4 i i -Sll Sl()

Fig. 49 4-Bit Adder

L/



i Carry Propagation

= Fig.4-9 causes a unstable factor on carry bit, and produces a
longest propagation delay.

= The signal from C to the output carry C,, propagates
through an AND and OR gates, so, for an n-bit RCA, there
are 2n gate levels for the carry to propagate from input to

output.
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i Carry Propagation

= Because the propagation delay will affect the output signals
on different time, so the signals are given enough time to
get the precise and stable outputs.

= The most widely used technique employs the principle of
carry look-ahead to improve the speed of the algorithm.

A; P;
B

)
J G

)
J Ci+1

Fig. 4-10 Full Adder with P and G Shown 19



i Boolean functions

P. = A @ B, steady state value
G = AB steady state value
Output sum and carry
S =P eC
Ci1 =G + PG
G, : carry generate P : carry propagate
Co, = input carry
C, = Gy + PyCy
C, =Gy + PG =Gy + PGy + P1PyCy
C =G, + P,G, =G, + P,G; + P,P,G, + P,P;P4C,

= C;5 does not have to wait for C, and C; to propagate.

20



Logic diagram of
carry look-ahead generator

= C; is propagated at the same time as C, and C;.

(10 | L

Fig. 4-11 Logic Diagram of Carry Lookahead Genera tor 21



i 4-bit adder with carry lookahead

= Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

C4 C4

B3 —4’—)% Pg

A3z 7 -
C3

e

%

Look ahead

1 —— generator
Py
1 7

> W

%.

Fig. 4-12 4-Bit Adder with Carry LLookahead



i Binary subtractor

M = 1->subtractor ; M = 0—>adder

M
Y Y Y Y
C Cr Cq Co
FA - FA - FA - FA -
S3 AY) S1 So

Fig. 4-13 4-Bit Adder Subtractor
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i Overflow

= It is worth noting Fig.4-13 that binary numbers in the
signed-complement system are added and subtracted by the
same basic addition and subtraction rules as unsigned
numbers.

= Overflow is a problem in digital computers because the
number of bits that hold the number is finite and a result
that contains n+1 bits cannot be accommodated.
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i Overflow on signed and unsigned

= When two unsigned numbers are added, an overflow is
detected from the end carry out of the MSB position.

= When two signed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate
an overflow.

= An overflow cann’t occur after an addition if one number is
positive and the other is negative.

= An overflow may occur if the two numbers added are both
positive or both negative.
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i Decimal adder

BCD adder can’t exceed 9 on each input digit. K is the carry.

Table 4-5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K Zg Zs Z> Z, C Ss Sa S, A

0 0 O O 0] 0] O 0 O O 8]
0 0 O ) 1 O O 0 O 1 1
0 O () 1 O O O O 1 O 2
0 0 0] 1 1 O O O 1 1 3
0 O 1 O O O 0O | O O 4
0 O 1 O 1 O O 1 O 1 5
0 0 1 1 O O O 1 1 O 6
0 0] 1 1 1 O O 1 1 | 7
0 | O O () O 1 () O O 8
(8 1 () O 1 O 1 O O 1 o
0 | O 1 O 1 0] O O O 10
0 1 O 1 1 1 O (@) O 1 11
0 1 1 O O 1 O O 1 O 12
0 1 1 O 1 1 0 O 1 1 13
0 1 1 1 O 1 O 1 O O 14
0 1 1 1 1 1 O 1 O 1 15
1 0 O O O 1 O 1 1 O 16
1 0] O O 1 1 8] | 1 1 17
1 0 O 1 O 1 | O O O 18
1 0 O 1 1 1 1 O O 1 19




i Rules of BCD adder

= When the binary sum is greater than 1001, we obtain a
representation.

= The addition of binary 6(0110) to the binary sum converts it
to the correct BCD representation and also produces an
output carry as required.

= T0 distinguish them from binary 1000 and 1001, which also
have a 1 in position Zg, we specify further that either Z, or
Z> must have a 1.

C — K + Z8Z4 + ZgZz
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i Implementation of BCD adder

= A decimal parallel lAfdeIdl lAIgeTl
adder that adds n
1 Tall Carry K 4- bit binary adder <_C§rry
decimal digits needs out P, in

n BCD adder stages.

= The output carry Output %_@C

from one stage
must be connected

to the input carry of T
the next higher- UL ey st

order stage. T T

Sg S48 85

If =1

Fig. 4-14 Block Diagram of a BCD Adder



= The equality relation of each
pair of bits can be expressed
logically with an exclusive-NOR
function as:

A - A3A2A1A0 ; B - B3BzBlBO
Xi=AiBi+Ai’Bi, fOI‘ | - O, 1, 2, 3

(A = B) = X3XX1Xg

3

B3

Ay

A
X3

i Magnitude comparator

*—

X2
>

I

QU

I

I

l

JU UUU

Fig. 4-17 4-Bit Magnitude Comparator

29



i Magnitude comparator
= We inspect the relative 43 Q[ .

LHU

—:YL>A<B)

= If the corresponding digit of A is
1 and that of B is 0, we conclude 5
that A>B.

(A>B)=

magnitudes of pairs of MSB. If 5,

equal, we compare the next
X2
X

0 A > B)

:

I

=
reached. K
=
=

lower significant pair of digits A

until a pair of unequal digits is
Fig. 4-17 4-Bit Magnitude Comparator

A3 B’3 +X3AzB’2+X3X2A1 B’ 1 +X3X2X1AoB’0
(A<B)=
A’3B3 +X3A’ZBZ +X3X2A’ 1 Bl +X3X2X1A,OBO

|

JO Jd O

(A=B)

3V



i Decoders

= The decoder is called n-to-m-line decoder, where
m<2".

= the decoder is also used in conjunction with other
code converters such as a BCD-to-seven_segment
decoder.

= 3-t0-8 line decoder: For each possible input
combination, there are seven outputs that are
equal to 0 and only one that is equal to 1.
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i Implementation and truth table

Table 46

) po=xyz Tnih Toblof o 3o Line Decoder
[>o — T
z ), Dy=x'y'z w m
D° D Dy =x'yz’ ! y l Dl Dl D) D) 04 D, D‘ D,
y D pi=xye 0 0 0 0 0 0 0
> 0 0 | b1 0 0 0 0 0 0
ﬂ Dys=xy'7
' R TV 0 0 | 0 0 0 0 0
) A I b0 0 00 00
| 0 0 0 0 0 0 | 0 0 o
) Do=w | || 0000 0 1 0 0
— ) 1 00 0 0 0 0 I 0
— A (o iy b0 0 0 0 0 0 |

Fig. 4-18 3-to-8-Line Decoder




i Decoder with enable input

s Some decoders are constructed with NAND gates, it
becomes more economical to generate the decoder
minterms in their complemented form.

= As indicated by the truth table , only one output can be
equal to 0 at any given time, all other outputs are equal to 1.

)O Dg
E A B Do Dy D, Dsj
o— D
! 1 X X 1 1 1 1
A 7_[>H 0O 0 0 o 1 1 1
o o0 1 1 0 1 1
} D> 0O 1 0 1 1 0 1
B _.,_|>O_1 o 1 1 1 1 1 0
)
E Dc
(a) Logic diagram (b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input
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3-to-8 decoder with enable
implement the 4-to-16 decoder

X ®
. 3X8 L oD
Y decoder 0to L7
<  d E
W +D0
3 X8
decoder Dgto D5
E

Fig. 4-20 4 X 16 Decoder Constructed with Two 3 X 8 Decoders
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Implementation of a Full Adder with
a Decoder

From table 4-4, we obtain the functions for the combinational circuit in
sum of minterms:

S(x, v, 2) = 2(1, 2,4, 7)
Cx, y,2) = 2(3, 5,6, 7)

0
1

S
x —{ 22 2
, 5 3%8 3
decoder 4

Z—20 5 C
6
7

Fig. 4-21 Implementation of a Full Adder with a Decoder
35



i4-9. Encoders

= An encoder is the inverse operation of a decoder.

= \We can derive the Boolean functions by table 4-7
z=D;+ D3+ Ds+ D,
y =D, + D3+ Dg+ Dy
X = D4+ Ds+ Dg + Dy

Table 4-7

Truth Table of Octal-to-Binary Encoder
Inputs Outputs
D, D, D, D, D, Ds D, D, x y z
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 (1]
0 0 | 0 0 0 0] 0 0 1
0 0] 0 1 0 0 0 0 0 | m
0 0 0 0 | 0 0 0 | 0 0
0 0 0 0 0 1 0 0 1 0 m
0 0 0 0 0 0 1 0 1 | 0
0 0 0 0 0 0 0 ] 1 1 (1]




i Priority encoder

= If two are active simultaneously, the produces
an undefined combination. We can establish an input priority
to ensure that only one input is encoded.

o in the octal-to-binary encoder is that an
output with all 0’s is generated when all the inputs are 0;
the output is the same as when D, is equal to 1.

= The discrepancy tables on Table 4-7 and Table 4-8 can
resolve aforesaid condition by providing one more output to
indicate that at least one input is equal to 1.
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i Priority encoder

V=0->no valid inputs

V=1->valid inputs Table 4-8
Truth Table of a Priority Encoder

X's in output columns represent Wputs ~ Outputs
don’t-care conditions Dy Dy D Dy X
X’s in the input columns are 0 0 0 0 X X

) 0 () 0 0
0 0 0 l
l 0 I 0
X I l I

useful for representing a truth
table in condensed form.

- P P —

l
X
Y

Instead of listing all 16
minterms of four variables.



i 4-input priority encoder

D,
00 01 11 10 00 01 11 10
ol x | 1 1 1 ol x | 1 1 0
| Implementatlon Of 01 1 1 1 o1 1 | 1 1 0
D; -
table 4-8 11 1 1 1 11 1 1 1 O
DO DO
10 1 1 1 10 1 1 O
X = DZ + D3 Dj D3
’ x =Dy + D3 — D3+ DD’
y — D3 + DlD 2 2 y 12
Fig. 4-22 Maps for a Priority Encoder
V=Dy+ D;+ D, + D;
D

D, Dc I_J—::Df y
D e
N
1/

%

Fig. 4-23 4-Input Priority Encoder 39



i Multiplexers

S=0,Y=1 Truth Table=> S Y Y =S'1, + S[;

S=1,Y=1, 0 | I
1 | L
“ B

§ ————J>o S

(a) Logic diagram (b) Block diagram
Fig. 4-24 2-to-1-Line Multiplexer
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i 4-to-1 Line Multiplexer

Iy

S1

S0

RN

A

(a) Logic diagram

Fig. 4-25 4-to-1-Line Multiplexer

S1 YY) Y
o 0| I
o 1| I
1 0| I
1 1 I3

(b) Function table
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Quadruple 2-to-1 Line Multiplexer

= Multiplexer circuits can be combined with common selection inputs to
provide multiple-bit selection logic. Compare with Fig4-24.

—L D— Yo
A1 [ )
1/ D— Y,
A Iy — Y
|
— D_ Y,
—1 D— Y3
BO i N\
—1 Function table
Output Y
B ' ) f j{ all O's
I]. — O O] selectA
B> ,_i_/l\ 0O 1| select B
B3 R
S —i4
(selSect) {>o {><>
(enfble) {>c

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer
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i Boolean function implementation

= A more efficient method for implementing a Boolean
function of n variables with a multiplexer that has n-1
selection inputs.

F(x, v, 2) = 2(1,2,6,7)

4 X 1 MUX

y — S

x —8,
X vy z F
0 0|0 O

F =
0 0 (1 |1 z : —0 F
0 110 |1 o )
0110|777 g !
Lojo ol o 0 —2
1 01 ]0 B
tafo [ ! .
11 1|1 -
(a) Truth table (b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer



4-input function with a
multiplexer

F(A, B, C, D) = X(1, 3, 4, 11, 12, 13, 14, 15)

8 x 1 MUX

A B CD|F
0 0 0[0] 0] ¢ %0
0o 0 o1 1] F=D B S
0 0 1[0] 0] ._ A s,
0o 0 1|1 1| F=P
0 1 0[0 1

Y D * * 0
0 1 01| o F=P )
0 1 1[0[0] -
0o 1 1,1, 0o F=0 t {>° 2
1 0 00| of . 0 3
1 0 0|1 o F70 ! 4
1 0 1]0] 0
1o 1]1/] 1] F=P >
1 1 00| 1 1 6
11 01 1| F7l T 7
1 1 1]0] 1
11 111 F=71

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer 44



